Pathways of nanotoxicity: Modes of detection, impact, and challenges
Deepshikha GUPTA, Parul YADAV, Devesh GARG, Tejendra K. GUPTA
Pathways of nanotoxicity: Modes of detection, impact, and challenges
Nanotoxicology has become the subject of intense research for more than two decades. Thousands of articles have been published but the space in understanding the nanotoxicity mechanism and the assessment is still unclear. Recent researches clearly show potential benefits of nanomaterials (NMs) in diagnostics and treatment, targeted drug delivery, and tissue engineering owing to their excellent physicochemical properties. However, these NMs display hazardous health effect then to the greater part of the materials because of small size, large surface area-to-volume ratio, quantum size effects, and environmental factors. Nowadays, a large number of NMs are used in industrial products including several medical applications, consumer, and healthcare products. However, they came into the environment without any safety test. The measurement of toxicity level has become important because of increasing toxic effects on living organisms. New realistic mechanism-based strategies are still needed to determine the toxic effects of NMs. For the assessment of NMs toxicity, reliable and standardized procedures are necessary. This review article provides systematic studies on toxicity of NMs involving manufacturing, environmental factors, eco-toxic and genotoxic effects, some parameters which have been ignored of NMs versus their biological counterparts, cell heterogeneity, and their current challenges and future perspectives.
nanomaterial / nanotoxicity / cytotoxicity, genotoxicity / in-vivo and in-vitro toxicity / reactive oxygen species
[1] |
Lowry G V, Gregory K B, Apte S C,
CrossRef
Pubmed
Google scholar
|
[2] |
Shinde R B, Veerapandian M, Kaushik A,
CrossRef
Pubmed
Google scholar
|
[3] |
Jeevanandam J, Barhoum A, Chan Y S,
CrossRef
Pubmed
Google scholar
|
[4] |
Malhotra B D, Ali M A. Chapter 1 - Nanomaterials in biosensors: Fundamentals and applications. In: Malhotra B D, Ali M A, eds. Nanomaterials for Biosensors. William Andrew Publishing, 2018, 1–74
|
[5] |
Musee N. Nanowastes and the environment: Potential new waste management paradigm. Environment International, 2011, 37(1): 112–128
CrossRef
Pubmed
Google scholar
|
[6] |
Griffin S, Masood M I, Nasim M J,
CrossRef
Pubmed
Google scholar
|
[7] |
Zuo J, Jiang T, Zhao X,
CrossRef
Google scholar
|
[8] |
Ajdary M, Moosavi M A, Rahmati M,
CrossRef
Pubmed
Google scholar
|
[9] |
Kush P, Kumar P, Singh R,
CrossRef
Google scholar
|
[10] |
Gupta R, Xie H. Nanoparticles in daily life: Applications, toxicity and regulations. Journal of Environmental Pathology, Toxicology and Oncology, 2018, 37(3): 209–230
CrossRef
Pubmed
Google scholar
|
[11] |
Patra J K, Das G, Fraceto L F,
CrossRef
Pubmed
Google scholar
|
[12] |
Buzea C, Pacheco I I, Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2007, 2(4): MR17–MR71
CrossRef
Pubmed
Google scholar
|
[13] |
Wani M Y, Hashim M A, Nabi F,
CrossRef
Google scholar
|
[14] |
Zhang Y, Ram M K, Stefanakos E K,
CrossRef
Google scholar
|
[15] |
Erofeev A, Gorelkin P, Garanina A,
CrossRef
Pubmed
Google scholar
|
[16] |
Gellert G. Sensitivity and significance of luminescent bacteria in chronic toxicity testing based on growth and bioluminescence. Ecotoxicology and Environmental Safety, 2000, 45(1): 87–91
CrossRef
Pubmed
Google scholar
|
[17] |
Yuan X, Zhang X, Sun L,
CrossRef
Pubmed
Google scholar
|
[18] |
Shin S W, Song I H, Um S H. Role of physicochemical properties in nanoparticle toxicity. Nanomaterials, 2015, 5(3): 1351–1365
CrossRef
Pubmed
Google scholar
|
[19] |
Iqbal M A, Md S, Sahni J K,
CrossRef
Pubmed
Google scholar
|
[20] |
Rose J, Auffan M, Proux O,
|
[21] |
Sukhanova A, Bozrova S, Sokolov P,
CrossRef
Pubmed
Google scholar
|
[22] |
Gliga A R, Skoglund S, Wallinder I O,
CrossRef
Pubmed
Google scholar
|
[23] |
Albanese A, Tang P S, Chan W C W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annual Review of Biomedical Engineering, 2012, 14(1): 1–16
CrossRef
Pubmed
Google scholar
|
[24] |
Huo S, Jin S, Ma X,
CrossRef
Pubmed
Google scholar
|
[25] |
Viswanath B, Kim S. Influence of nanotoxicity on human health and environment: The alternative strategies. In: de Voogt P, ed. Reviews of Environmental Contamination and Toxicology. Cham, Switzerland: Springer International Publishing, 2017, 61–104
|
[26] |
Agus H H, Hornsby M, Chen M,
CrossRef
Google scholar
|
[27] |
Contini C, Hindley J W, Macdonald T J,
CrossRef
Pubmed
Google scholar
|
[28] |
Kim T H, Kim M, Park H S,
CrossRef
Pubmed
Google scholar
|
[29] |
Li Z, Hulderman T, Salmen R,
CrossRef
Pubmed
Google scholar
|
[30] |
Hu W, Peng C, Lv M,
CrossRef
Pubmed
Google scholar
|
[31] |
Ou L, Song B, Liang H,
CrossRef
Pubmed
Google scholar
|
[32] |
Schmid O, Stoeger T. Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the lung. Journal of Aerosol Science, 2016, 99: 133–143
CrossRef
Google scholar
|
[33] |
Karakoti A S, Hench L L, Seal S. The potential toxicity of nanomaterials — The role of surfaces. JOM, 2006, 58(7): 77–82
CrossRef
Google scholar
|
[34] |
Limbach L K, Li Y, Grass R N,
CrossRef
Pubmed
Google scholar
|
[35] |
Cho J, Kushiro K, Teramura Y,
CrossRef
Pubmed
Google scholar
|
[36] |
El Badawy A M, Silva R G, Morris B,
CrossRef
Pubmed
Google scholar
|
[37] |
Bahadar H, Maqbool F, Niaz K,
Pubmed
|
[38] |
Fubini B, Hubbard A. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radical Biology and Medicine, 2003, 34(12): 1507–1516
CrossRef
Pubmed
Google scholar
|
[39] |
Rathee G, Bartwal G, Rathee J,
CrossRef
Google scholar
|
[40] |
Zhu J, Ou X, Su J,
CrossRef
Pubmed
Google scholar
|
[41] |
Dusinska M, Boland S, Saunders M,
CrossRef
Google scholar
|
[42] |
Nel A, Xia T, Mädler L,
CrossRef
Pubmed
Google scholar
|
[43] |
Schmidt J, Vogelsberger W. Aqueous long-term solubility of titania nanoparticles and titanium(IV) hydrolysis in a sodium chloride system studied by adsorptive stripping voltammetry. Journal of Solution Chemistry, 2009, 38(10): 1267–1282
CrossRef
Google scholar
|
[44] |
Donaldson K, Stone V. Current hypotheses on the mechanisms of toxicity of ultrafine particles. Annali dell’Istituto Superiore di Sanita, 2003, 39(3): 405–410
Pubmed
|
[45] |
Avramescu M L, Rasmussen P E, Chénier M,
CrossRef
Pubmed
Google scholar
|
[46] |
Thakuria A, Kataria B, Gupta D. Nanoparticle-based methodo-logies for targeted drug delivery — An insight. Journal of Nanoparticle Research, 2021, 23(4): 87
CrossRef
Google scholar
|
[47] |
Annangi B, Rubio L, Alaraby M,
CrossRef
Pubmed
Google scholar
|
[48] |
Wang M, Zhang Y, Xu M, et al. Roles of TRPA1 and TRPV1 in cigarette smoke-induced airway epithelial cell injury model. Free Radical Biology and Medicine, 2019, 134: 229–238
CrossRef
Google scholar
|
[49] |
Huang Y, Ding L, Li C,
CrossRef
Google scholar
|
[50] |
Assadian E, Zarei M H, Gilani A G,
CrossRef
Pubmed
Google scholar
|
[51] |
Karlsson H L, Cronholm P, Gustafsson J,
CrossRef
Pubmed
Google scholar
|
[52] |
Chen Z, Meng H, Xing G,
CrossRef
Pubmed
Google scholar
|
[53] |
Tulve N S, Stefaniak A B, Vance M E,
CrossRef
Pubmed
Google scholar
|
[54] |
Lok C N, Ho C M, Chen R,
CrossRef
Pubmed
Google scholar
|
[55] |
Grande F, Tucci P. Titanium dioxide nanoparticles: A risk for human health? Mini-Reviews in Medicinal Chemistry, 2016, 16(9): 762–769
CrossRef
Pubmed
Google scholar
|
[56] |
Tsoli M, Kuhn H, Brandau W,
CrossRef
Pubmed
Google scholar
|
[57] |
Chen L W, Hao Y C, Guo Y,
CrossRef
Pubmed
Google scholar
|
[58] |
Simpson C A, Salleng K J, Cliffel D E,
CrossRef
Pubmed
Google scholar
|
[59] |
Choi M K, Yang J, Hyeon T,
CrossRef
Google scholar
|
[60] |
Shirasaki Y, Supran G J, Bawendi M G,
CrossRef
Google scholar
|
[61] |
Ryman-Rasmussen J P, Riviere J E, Monteiro-Riviere N A. Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicological Sciences, 2006, 91(1): 159–165
CrossRef
Pubmed
Google scholar
|
[62] |
Hoshino A, Fujioka K, Oku T,
CrossRef
Google scholar
|
[63] |
Erol O, Uyan I, Hatip M,
CrossRef
Pubmed
Google scholar
|
[64] |
Gupta T K, Budarapu P R, Chappidi S R,
CrossRef
Pubmed
Google scholar
|
[65] |
Gupta T K, Singh B P, Teotia S,
CrossRef
Google scholar
|
[66] |
Morimoto Y, Horie M, Kobayashi N,
CrossRef
Pubmed
Google scholar
|
[67] |
Fujita K, Fukuda M, Endoh S,
CrossRef
Pubmed
Google scholar
|
[68] |
Frank E A, Carreira V S, Birch M E,
CrossRef
Pubmed
Google scholar
|
[69] |
Francis A P D T, Devasena T. Toxicity of carbon nanotubes: A review. Toxicology and Industrial Health, 2018, 34(3): 200–210
CrossRef
Pubmed
Google scholar
|
[70] |
Lin B, Zhang H, Lin Z,
CrossRef
Pubmed
Google scholar
|
[71] |
Zheng W, McKinney W, Kashon M,
CrossRef
Pubmed
Google scholar
|
[72] |
Akhavan O, Ghaderi E, Emamy H,
CrossRef
Google scholar
|
[73] |
Wang A, Pu K, Dong B,
CrossRef
Pubmed
Google scholar
|
[74] |
Aschberger K, Johnston H J, Stone V,
CrossRef
Pubmed
Google scholar
|
[75] |
Murugadoss S, Lison D, Godderis L,
CrossRef
Pubmed
Google scholar
|
[76] |
Ahamed M, Karns M, Goodson M,
CrossRef
Pubmed
Google scholar
|
[77] |
Parasuraman S. Toxicological screening. Journal of Pharmacolo-gy & Pharmacotherapeutics, 2011, 2(2): 74–79
CrossRef
Pubmed
Google scholar
|
[78] |
Marano F, Rodrigues-Lima F, Dupret J M,
|
[79] |
Teh C H, Nazni W A, Nurulhusna A H,
CrossRef
Pubmed
Google scholar
|
[80] |
Soboleski M R, Oaks J, Halford W P. Green fluorescent protein is a quantitative reporter of gene expression in individual eukaryotic cells. The FASEB Journal, 2005, 19: 440–442
CrossRef
Pubmed
Google scholar
|
[81] |
Balouiri M, Sadiki M, Ibnsouda S K. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 2016, 6(2): 71–79
CrossRef
Pubmed
Google scholar
|
[82] |
Strober W. Trypan blue exclusion test of cell viability. Current Protocols in Immunology, 2015, 111: A3.B.1–A3.B.3
CrossRef
Google scholar
|
[83] |
Vinken M, Rogiers V, eds. Protocols in In Vitro Hepatocyte Research. Humana Press, 2015
|
[84] |
Zhao M, Li D, Yuan L,
CrossRef
Google scholar
|
[85] |
Kim H R, Park Y J, Shin D Y,
CrossRef
Pubmed
Google scholar
|
[86] |
Gurunathan S, Han J W, Eppakayala V,
CrossRef
Pubmed
Google scholar
|
[87] |
Kumar V, Sharma N, Maitra S S. In vitro and in vivo toxicity assessment of nanoparticles. International Nano Letters, 2017, 7(4): 243–256
CrossRef
Google scholar
|
[88] |
Saadat Y R, Saeidi N, Vahed S Z,
CrossRef
Pubmed
Google scholar
|
[89] |
Chang H Y, Huang H C, Huang T C,
CrossRef
Google scholar
|
[90] |
Bin-Jumah M N, Al-Abdan M, Al-Basher G,
CrossRef
Pubmed
Google scholar
|
[91] |
Alsaedi I I J, Taqi Z J, Hussien A M A,
CrossRef
Google scholar
|
[92] |
Asare N, Duale N, Slagsvold H H,
CrossRef
Pubmed
Google scholar
|
[93] |
Kasibhatla S, Amarante-Mendes G P, Finucane D,
CrossRef
Google scholar
|
[94] |
Bucevičius J, Lukinavičius G, Gerasimaitė R. The use of hoechst dyes for DNA staining and beyond. Chemosensors, 2018, 6(2): 18
CrossRef
Google scholar
|
[95] |
Wick P, Chortarea S, Guenat O T,
CrossRef
Google scholar
|
[96] |
Mahmood S, Mandal U K, Chatterjee B,
CrossRef
Google scholar
|
[97] |
Tardiff R G. In vitro methods of toxicity evaluation. Annual Review of Pharmacology and Toxicology, 1978, 18(1): 357–369
CrossRef
Pubmed
Google scholar
|
[98] |
Hillegass J M, Shukla A, Lathrop S A,
CrossRef
Pubmed
Google scholar
|
[99] |
Astashkina A, Grainger D W. Critical analysis of 3-D organoid in vitro cell culture models for high-throughput drug candidate toxicity assessments. Advanced Drug Delivery Reviews, 2014, 69–70: 1–18
CrossRef
Pubmed
Google scholar
|
[100] |
Ni M, Xiong M, Zhang X,
CrossRef
Pubmed
Google scholar
|
[101] |
Li G Y, Osborne N N. Oxidative-induced apoptosis to an immortalized ganglion cell line is caspase independent but involves the activation of poly(ADP-ribose) polymerase and apoptosis-inducing factor. Brain Research, 2008, 1188: 35–43
CrossRef
Pubmed
Google scholar
|
[102] |
Ryter S W, Kim H P, Hoetzel A,
CrossRef
Pubmed
Google scholar
|
[103] |
Lu X, Qian J, Zhou H,
|
[104] |
Browne S M, Al-Rubeai M. Defining viability in mammalian cell cultures. Biotechnology Letters, 2011, 33(9): 1745–1749
CrossRef
Google scholar
|
[105] |
Kumar V, Sharma N, Maitra S S. In vitro and in vivo toxicity assessment of nanoparticles. International Nano Letters, 2017, 7(4): 243–256
CrossRef
Google scholar
|
[106] |
Borenfreund E, Shopsis C. Toxicity monitored with a correlated set of cell-culture assays. Xenobiotica, 1985, 15(8–9): 705–711
CrossRef
Pubmed
Google scholar
|
[107] |
Magder S. Reactive oxygen species: Toxic molecules or spark of life? Critical Care, 2006, 10(1): 208
CrossRef
Pubmed
Google scholar
|
[108] |
Gomes A, Fernandes E, Lima J L F C. Fluorescence probes used for detection of reactive oxygen species. Journal of Biochemical and Biophysical Methods, 2005, 65(2–3): 45–80
CrossRef
Pubmed
Google scholar
|
[109] |
Wagner A J, Bleckmann C A, Murdock R C,
CrossRef
Pubmed
Google scholar
|
[110] |
Fantel A G. Reactive oxygen species in developmental toxicity: Review and hypothesis. Teratology, 1996, 53(3): 196–217
CrossRef
Pubmed
Google scholar
|
[111] |
Hussain S M, Javorina A K, Schrand A M,
CrossRef
Pubmed
Google scholar
|
[112] |
Sohn E K , Chung Y S, Johari S A,
CrossRef
Google scholar
|
[113] |
Delcroix G J R, Jacquart M, Lemaire L,
CrossRef
Pubmed
Google scholar
|
[114] |
Bahadar H, Maqbool F, Niaz K,
CrossRef
Google scholar
|
[115] |
Davoren M, Herzog E, Casey A,
CrossRef
Pubmed
Google scholar
|
[116] |
Choi S J, Oh J M, Choy J H. Toxicological effects of inorganic nanoparticles on human lung cancer A549 cells. Journal of Inorganic Biochemistry, 2009, 103(3): 463–471
CrossRef
Pubmed
Google scholar
|
[117] |
Herzog E, Byrne H J, Casey A,
CrossRef
Pubmed
Google scholar
|
[118] |
AshaRani P V, Mun G L K, Hande M P,
CrossRef
Google scholar
|
[119] |
Reddy A R N, Reddy Y N, Krishna D R,
CrossRef
Pubmed
Google scholar
|
[120] |
Walker V G, Li Z, Hulderman T,
CrossRef
Pubmed
Google scholar
|
[121] |
Shvedova A A, Castranova V, Kisin E R,
CrossRef
Pubmed
Google scholar
|
[122] |
Cherukuri P, Bachilo S M, Litovsky S H,
CrossRef
Pubmed
Google scholar
|
[123] |
Pulskamp K, Diabaté S, Krug H F. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicology Letters, 2007, 168(1): 58–74
CrossRef
Pubmed
Google scholar
|
[124] |
Hu F, Neoh K G, Cen L,
CrossRef
Pubmed
Google scholar
|
[125] |
Liu Y, Chen W, Joly A G,
CrossRef
Pubmed
Google scholar
|
[126] |
Bueno J. Chapter 6 - Nanotoxicity: The impact of increasing drug bioavailability. In: Shegokar R, ed. Nanopharmaceuticals. Elsevier, 2020, 121–133
|
[127] |
Vazquez-Muñoz R, Borrego B, Juárez-Moreno K,
CrossRef
Pubmed
Google scholar
|
[128] |
Mao B H, Chen Z Y, Wang Y J,
CrossRef
Pubmed
Google scholar
|
[129] |
Li H, Huang T, Wang Y,
CrossRef
Pubmed
Google scholar
|
[130] |
Sadiq I M, Pakrashi S, Chandrasekaran N,
CrossRef
Google scholar
|
[131] |
Morsy G M, Abou El-Ala K S, Ali A A. Studies on fate and toxicity of nanoalumina in male albino rats: Lethality, bioaccumulation and genotoxicity. Toxicology and Industrial Health, 2016, 32(2): 344–359
CrossRef
Pubmed
Google scholar
|
[132] |
Lee I C, Ko J W, Park S H,
Pubmed
|
[133] |
Wang T, Long X, Cheng Y,
CrossRef
Pubmed
Google scholar
|
[134] |
Shi H, Magaye R, Castranova V,
CrossRef
Pubmed
Google scholar
|
[135] |
Uekawa N, Endo N, Ishii K,
CrossRef
Google scholar
|
[136] |
Lv K, Yu J, Cui L,
CrossRef
Google scholar
|
[137] |
Siddiqi K S, Rahman A U, Tajuddin
CrossRef
Pubmed
Google scholar
|
[138] |
Sahu D, Kannan G M, Vijayaraghavan R,
CrossRef
Pubmed
Google scholar
|
[139] |
Mishra P K, Mishra H, Ekielski A,
CrossRef
Pubmed
Google scholar
|
[140] |
Ali A, Zafar H, Zia M,
CrossRef
Pubmed
Google scholar
|
[141] |
Cotin G, Piant S, Mertz D,
|
[142] |
Tiwari V, Mishra N, Gadani K,
CrossRef
Pubmed
Google scholar
|
[143] |
Feng Q, Liu Y, Huang J,
CrossRef
Pubmed
Google scholar
|
[144] |
Bladh K, Falk L K L, Rohmund F. On the iron-catalysed growth of single-walled carbon nanotubes and encapsulated metal particles in the gas phase. Applied Physics A: Materials Science & Processing, 2000, 70(3): 317–322
CrossRef
Google scholar
|
[145] |
Gupta T K, Budarapu P R, Chappidi S R,
CrossRef
Pubmed
Google scholar
|
[146] |
Kokorina A A, Ermakov A V, Abramova A M,
CrossRef
Google scholar
|
[147] |
Maiti D, Tong X, Mou X,
CrossRef
Pubmed
Google scholar
|
[148] |
Mohanta D, Patnaik S, Sood S,
CrossRef
Pubmed
Google scholar
|
[149] |
Wan B, Wang Z X, Lv Q Y,
CrossRef
Pubmed
Google scholar
|
[150] |
Dong P X, Wan B, Wang Z X,
CrossRef
Pubmed
Google scholar
|
[151] |
Palomäki J, Karisola P, Pylkkänen L,
CrossRef
Pubmed
Google scholar
|
[152] |
Jia G, Wang H, Yan L,
CrossRef
Pubmed
Google scholar
|
[153] |
Oberdörster C, Maynard A, Donaldson K,
CrossRef
Pubmed
Google scholar
|
[154] |
Bergin I L, Witzmann F A. Nanoparticle toxicity by the gastrointestinal route: Evidence and knowledge gaps. International Journal of Biomedical Nanoscience and Nanotechnology, 2013, 3(1–2): 163–210
CrossRef
Pubmed
Google scholar
|
[155] |
Brouwer D H, Gijsbers J H J, Lurvink M W M. Personal exposure to ultrafine particles in the workplace: Exploring sampling techniques and strategies. The Annals of Occupational Hygiene, 2004, 48(5): 439–453
Pubmed
|
[156] |
Bennat C, Müller-Goymann C C. Skin penetration and stabilization of formulations containing microfine titanium dioxide as physical UV filter. International Journal of Cosmetic Science, 2000, 22(4): 271–283
CrossRef
Pubmed
Google scholar
|
[157] |
De Jong W H, Borm P J A. Drug delivery and nanoparticles: Applications and hazards. International Journal of Nanomedicine, 2008, 3(2): 133–149
CrossRef
Pubmed
Google scholar
|
[158] |
Grabrucker A M, Garner C C, Boeckers T M,
CrossRef
Pubmed
Google scholar
|
[159] |
Salatin S, Khosroushahi A Y. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. Journal of Cellular and Molecular Medicine, 2017, 21(9): 1668–1686
CrossRef
Pubmed
Google scholar
|
[160] |
Li H, Tsui T Y, Ma W. Intracellular delivery of molecular cargo using cell-penetrating peptides and the combination strategies. International Journal of Molecular Sciences, 2015, 16(8): 19518–19536
CrossRef
Pubmed
Google scholar
|
[161] |
Zhang J M, An J. Cytokines, inflammation, and pain. International Anesthesiology Clinics, 2007, 45(2): 27–37
CrossRef
Pubmed
Google scholar
|
[162] |
Thannickal V J, Fanburg B L. Reactive oxygen species in cell signaling. American Journal of Physiology: Lung Cellular and Molecular Physiology, 2000, 279(6): L1005–L1028
CrossRef
Pubmed
Google scholar
|
[163] |
Manke A, Wang L Y, Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Research International, 2013, 2013: 942916
CrossRef
Google scholar
|
[164] |
Das T K, Wati M R, Fatima-Shad K. Oxidative stress gated by Fenton and Haber Weiss reactions and its association with Alzheimer’s disease. Archives of Neuroscience, 2015, 2(2): e20078
CrossRef
Google scholar
|
[165] |
Ahamed M, Akhtar M J, Alhadlaq H A,
CrossRef
Pubmed
Google scholar
|
[166] |
Foldbjerg R, Dang D A, Autrup H. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Archives of Toxicology, 2011, 85(7): 743–750
CrossRef
Pubmed
Google scholar
|
[167] |
Jugan M L B S, Barillet S, Simon-Deckers A,
CrossRef
Pubmed
Google scholar
|
[168] |
Kansara K, Patel P, Shah D,
CrossRef
Pubmed
Google scholar
|
[169] |
Kreyling W G, Semmler-Behnke M, Seitz J,
CrossRef
Google scholar
|
[170] |
Poh T Y, Ali N A B M, Mac Aogáin M,
CrossRef
Pubmed
Google scholar
|
[171] |
Kuhlbusch T A J, Asbach C, Fissan H,
CrossRef
Pubmed
Google scholar
|
[172] |
Kessler R. Engineered nanoparticles in consumer products: Understanding a new ingredient. Environmental Health Perspectives, 2011, 119(3): a120–a125
CrossRef
Pubmed
Google scholar
|
[173] |
Bundschuh M, Filser J, Lüderwald S,
CrossRef
Pubmed
Google scholar
|
[174] |
Martínez G, Merinero M, Pérez-Aranda M,
CrossRef
Pubmed
Google scholar
|
[175] |
Dusinska M, Tulinska J, El Yamani N,
CrossRef
Pubmed
Google scholar
|
[176] |
Bhattacharya K, Andón F T, El-Sayed R,
CrossRef
Pubmed
Google scholar
|
[177] |
Sohaebuddin S K, Thevenot P T, Baker D,
CrossRef
Pubmed
Google scholar
|
[178] |
Sahu S C, Zheng J, Graham L,
CrossRef
Pubmed
Google scholar
|
[179] |
Hunt P R, Marquis B J, Tyner K M,
CrossRef
Pubmed
Google scholar
|
[180] |
Uboldi C, Urbán P, Gilliland D,
CrossRef
Pubmed
Google scholar
|
[181] |
Bostan H B, Rezaee R, Valokala M G,
CrossRef
Pubmed
Google scholar
|
[182] |
Du Z, Zhao D, Jing L,
CrossRef
Pubmed
Google scholar
|
[183] |
Yang C, Tian A, Li Z. Reversible cardiac hypertrophy induced by PEG-coated gold nanoparticles in mice. Scientific Reports, 2016, 6(1): 20203
CrossRef
Pubmed
Google scholar
|
[184] |
Rickerby D G, Morrison M. Nanotechnology and the environment: A European perspective. Science and Technology of Advanced Materials, 2007, 8(1–2): 19–24
CrossRef
Google scholar
|
[185] |
Kahru A, Dubourguier H C. From ecotoxicology to nanoecotoxi-cology. Toxicology, 2010, 269(2–3): 105–119
CrossRef
Pubmed
Google scholar
|
[186] |
Lv M, Huang W, Chen Z,
CrossRef
Pubmed
Google scholar
|
[187] |
Yan A, Chen Z. Impacts of silver nanoparticles on plants: A focus on the phytotoxicity and underlying mechanism. International Journal of Molecular Sciences, 2019, 20(5): 1003
CrossRef
Pubmed
Google scholar
|
[188] |
Siddiqui M H, Al-Whaibi M H, Faisal M,
CrossRef
Pubmed
Google scholar
|
[189] |
Song U, Jun H, Waldman B,
CrossRef
Pubmed
Google scholar
|
[190] |
Bouguerra S, Gavina A, Ksibi M,
CrossRef
Pubmed
Google scholar
|
[191] |
Kumari M, Khan S S, Pakrashi S,
CrossRef
Pubmed
Google scholar
|
[192] |
Wang Y, Hu J, Dai Z,
CrossRef
Pubmed
Google scholar
|
[193] |
Exbrayat J M, Moudilou E N, Lapied E. Harmful effects of nanoparticles on animals. Journal of Nanotechnology, 2015, 2015: 861092
CrossRef
Google scholar
|
[194] |
Petersen E J, Huang Q, Weber W J. Bioaccumulation of radio-labeled carbon nanotubes by Eisenia foetida. Environmental Science & Technology, 2008, 42(8): 3090–3095
CrossRef
Pubmed
Google scholar
|
[195] |
Handy R D, Henry T B, Scown T M,
CrossRef
Pubmed
Google scholar
|
[196] |
Krishnaraj C, Harper S L, Yun S I. In vivo toxicological assessment of biologically synthesized silver nanoparticles in adult zebrafish (Danio rerio). Journal of Hazardous Materials, 2016, 301: 480–491
CrossRef
Pubmed
Google scholar
|
[197] |
Myrzakhanova M, Gambardella C, Falugi C,
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |