Metal-organic framework-based intelligent drug delivery systems for cancer theranostic: A review
Qingni XU, Chaohua LI, Yuqi CHEN, Yueli ZHANG, Bo LU
Metal-organic framework-based intelligent drug delivery systems for cancer theranostic: A review
The design and development of multifunctional nano-drug delivery systems (NDDSs) is a solution that is expected to solve some intractable problems in traditional cancer treatment. In particular, metal-organic frameworks (MOFs) are novel hybrid porous nanomaterials which are constructed by the coordination of metal cations or clusters and organic bridging ligands. Benefiting from their intrinsic superior properties, MOFs have captivated intensive attentions in drug release and cancer theranostic. Based on what has been achieved about MOF-based DDSs in recent years, this review introduces different stimuli-responsive mechanisms of them and their applications in cancer diagnosis and treatment systematically. Moreover, the existing challenges and future opportunities in this field are summarized. By realizing industrial production and paying attention to biosafety, their clinical applications will be enriched.
metal-organic framework / nanomaterial / stimuli-responsiveness / cancer theranostic
[1] |
He H, Xie H, Chen Y,
CrossRef
Pubmed
Google scholar
|
[2] |
Sung H, Ferlay J, Siegel R L,
CrossRef
Pubmed
Google scholar
|
[3] |
Zhang M, Ma Y, Wang Z,
CrossRef
Pubmed
Google scholar
|
[4] |
Kumar A, Jaitak V. Natural products as multidrug resistance modulators in cancer. European Journal of Medicinal Chemistry, 2019, 176: 268–291
CrossRef
Pubmed
Google scholar
|
[5] |
Obayemi J D, Salifu A A, Eluu S C,
CrossRef
Pubmed
Google scholar
|
[6] |
Mittra I, Pal K, Pancholi N,
CrossRef
Pubmed
Google scholar
|
[7] |
Ding Y, Ma Y, Du C,
CrossRef
Pubmed
Google scholar
|
[8] |
Mi P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics, 2020, 10(10): 4557–4588
CrossRef
Pubmed
Google scholar
|
[9] |
Raj S, Khurana S, Choudhari R,
CrossRef
Pubmed
Google scholar
|
[10] |
Liu H, Jiang W, Wang Q,
CrossRef
Pubmed
Google scholar
|
[11] |
Pandey A, Kulkarni S, Vincent A P,
CrossRef
Pubmed
Google scholar
|
[12] |
Sanfilippo V, Caruso V C L, Cucci L M,
CrossRef
Pubmed
Google scholar
|
[13] |
Chen J, Ma Y, Du W,
CrossRef
Google scholar
|
[14] |
Kong M, Huang Y, Yu R,
CrossRef
Google scholar
|
[15] |
Wen W, Wu L, Chen Y,
CrossRef
Google scholar
|
[16] |
Guan Y, Yang Y, Wang X,
CrossRef
Google scholar
|
[17] |
Huang L, Liu J, Gao F,
CrossRef
Pubmed
Google scholar
|
[18] |
Shao M, Chang C, Liu Z,
CrossRef
Pubmed
Google scholar
|
[19] |
Chen K, Chang C, Liu Z,
CrossRef
Pubmed
Google scholar
|
[20] |
Saleem J, Wang L, Chen C. Carbon-based nanomaterials for cancer therapy via targeting tumor microenvironment. Advanced Healthcare Materials, 2018, 7(20): 1800525
CrossRef
Pubmed
Google scholar
|
[21] |
Loh K P, Ho D, Chiu G N C,
CrossRef
Pubmed
Google scholar
|
[22] |
Jiang B P, Zhou B, Lin Z,
CrossRef
Pubmed
Google scholar
|
[23] |
Zhao S, Cao W, Xing S,
CrossRef
Pubmed
Google scholar
|
[24] |
Zhang K, Zhang Y, Meng X,
CrossRef
Pubmed
Google scholar
|
[25] |
Yang Y, Liu X, Ma W,
CrossRef
Pubmed
Google scholar
|
[26] |
Yang L, Zhang C, Liu J,
CrossRef
Pubmed
Google scholar
|
[27] |
Hu C, Zhuang W, Yu T,
CrossRef
Pubmed
Google scholar
|
[28] |
Zhong S, Chen C, Yang G,
CrossRef
Pubmed
Google scholar
|
[29] |
Li X, Zhang Y, Zhi X,
CrossRef
Pubmed
Google scholar
|
[30] |
Zhou Y, Chang C, Liu Z,
CrossRef
Pubmed
Google scholar
|
[31] |
Zhang L, Shi X, Zhang Z,
CrossRef
Pubmed
Google scholar
|
[32] |
Gulcay E, Erucar I. Biocompatible MOFs for storage and separation of O2: A molecular simulation study. Industrial & Engineering Chemistry Research, 2019, 58(8): 3225–3237
CrossRef
Google scholar
|
[33] |
Daglar H, Gulbalkan H C, Avci G,
CrossRef
Pubmed
Google scholar
|
[34] |
Hao M, Qiu M, Yang H,
CrossRef
Pubmed
Google scholar
|
[35] |
Neufeld M J, Winter H, Landry M R,
CrossRef
Pubmed
Google scholar
|
[36] |
Gao X, Cui R, Ji G,
CrossRef
Pubmed
Google scholar
|
[37] |
Kumar P, Anand B, Tsang Y F,
CrossRef
Pubmed
Google scholar
|
[38] |
Schnabel J, Ettlinger R, Bunzen H. Zn-MOF-74 as pH-responsive drug-delivery system of arsenic trioxide. Chem-NanoMat, 2020, 6(8): 1229–1236
CrossRef
Google scholar
|
[39] |
Liu Z, Li T, Han F,
CrossRef
Pubmed
Google scholar
|
[40] |
Xiao Y, Xu M, Lv N,
CrossRef
Pubmed
Google scholar
|
[41] |
Liang S, Xiao X, Bai L,
CrossRef
Pubmed
Google scholar
|
[42] |
Sun Q, Bi H, Wang Z,
CrossRef
Pubmed
Google scholar
|
[43] |
Jiang Z, Wang T, Yuan S,
CrossRef
Pubmed
Google scholar
|
[44] |
Pan W, Shi M, Li Y,
CrossRef
Google scholar
|
[45] |
Yu L Y, Shen Y A, Chen M H,
CrossRef
Google scholar
|
[46] |
Sameiyan E, Bagheri E, Dehghani S,
CrossRef
Pubmed
Google scholar
|
[47] |
Yuwen L, Qiu Q, Xiu W,
CrossRef
Pubmed
Google scholar
|
[48] |
Zhang N, Li M, Sun X,
CrossRef
Pubmed
Google scholar
|
[49] |
Ding Y, Du C, Qian J,
CrossRef
Pubmed
Google scholar
|
[50] |
Zhang W, Lu J, Gao X,
CrossRef
Pubmed
Google scholar
|
[51] |
Sabz M, Kamali R, Ahmadizade S. Numerical simulation of magnetic drug targeting to a tumor in the simplified model of the human lung. Computer Methods and Programs in Biomedicine, 2019, 172: 11–24
CrossRef
Pubmed
Google scholar
|
[52] |
Shen S, Huang D, Cao J,
CrossRef
Pubmed
Google scholar
|
[53] |
Nguyen Cao T G, Kang J H, You J Y,
CrossRef
Pubmed
Google scholar
|
[54] |
Mathesh M, Sun J, van der Sandt F,
CrossRef
Pubmed
Google scholar
|
[55] |
Yan T, Zhu S, Hui W,
CrossRef
Pubmed
Google scholar
|
[56] |
Lázaro I A, Haddad S, Sacca S,
CrossRef
Pubmed
Google scholar
|
[57] |
Jiang K, Zhang L, Hu Q,
CrossRef
Google scholar
|
[58] |
Yu S, Wang S, Xie Z,
CrossRef
Pubmed
Google scholar
|
[59] |
Qin Y T, Peng H, He X W,
CrossRef
Pubmed
Google scholar
|
[60] |
Zhu J, Li H, Xiong Z,
CrossRef
Pubmed
Google scholar
|
[61] |
Liu Z, Shen N, Tang Z,
CrossRef
Pubmed
Google scholar
|
[62] |
Lin C, He H, Zhang Y,
CrossRef
Google scholar
|
[63] |
Li J, Wang Y, Sun S,
CrossRef
Pubmed
Google scholar
|
[64] |
Lei B, Wang M, Jiang Z,
CrossRef
Pubmed
Google scholar
|
[65] |
Liu Y, Gong C S, Dai Y,
CrossRef
Pubmed
Google scholar
|
[66] |
Deng J, Wang K, Wang M,
CrossRef
Pubmed
Google scholar
|
[67] |
Song X R, Li S H, Dai J,
CrossRef
Pubmed
Google scholar
|
[68] |
Chen W H, Yu X, Cecconello A,
CrossRef
Pubmed
Google scholar
|
[69] |
Chen W H, Liao W C, Sohn Y S,
CrossRef
Google scholar
|
[70] |
Wan S S, Zhang L, Zhang X Z. An ATP-regulated ion transport nanosystem for homeostatic perturbation therapy and sensitizing photodynamic therapy by autophagy inhibition of tumors. ACS Central Science, 2019, 5(2): 327–340
CrossRef
Pubmed
Google scholar
|
[71] |
Zuo W, Chen D, Fan Z,
CrossRef
Pubmed
Google scholar
|
[72] |
Lv W, Xia H, Zou L,
CrossRef
Pubmed
Google scholar
|
[73] |
Zhu X, Su Q, Feng W,
CrossRef
Pubmed
Google scholar
|
[74] |
Xu J, Gulzar A, Liu Y,
CrossRef
Pubmed
Google scholar
|
[75] |
Lismont M, Dreesen L, Wuttke S. Metal-organic framework nanoparticles in photodynamic therapy: Current status and perspectives. Advanced Functional Materials, 2017, 27(14): 1606314
CrossRef
Google scholar
|
[76] |
Park J, Jiang Q, Feng D,
CrossRef
Pubmed
Google scholar
|
[77] |
Liu J, Yang Y, Zhu W,
CrossRef
Pubmed
Google scholar
|
[78] |
Li B, Wang X, Chen L,
CrossRef
Pubmed
Google scholar
|
[79] |
Wang Y, Shi L, Ma D,
CrossRef
Pubmed
Google scholar
|
[80] |
Yang D, Xu J, Yang G,
CrossRef
Google scholar
|
[81] |
Huang J, Xu Z, Jiang Y,
CrossRef
Pubmed
Google scholar
|
[82] |
Cai X, Xie Z, Ding B,
CrossRef
Pubmed
Google scholar
|
[83] |
Cai X, Jiang Y, Lin M,
CrossRef
Pubmed
Google scholar
|
[84] |
Cui X, Han X, Yu L,
CrossRef
Google scholar
|
[85] |
Ibrahim M, Sabouni R, Husseini G A,
CrossRef
Pubmed
Google scholar
|
[86] |
Zhou Y, Wang M, Dai Z. The molecular design of and challenges relating to sensitizers for cancer sonodynamic therapy. Materials Chemistry Frontiers, 2020, 4(8): 2223–2234
CrossRef
Google scholar
|
[87] |
Huang C, Ding S, Jiang W,
CrossRef
Pubmed
Google scholar
|
[88] |
Pan X, Wang W, Huang Z,
CrossRef
Pubmed
Google scholar
|
[89] |
Ke X, Song X, Qin N,
CrossRef
Google scholar
|
[90] |
Aghayi-Anaraki M, Safarifard V. Fe3O4@MOF magnetic nanocomposites: Synthesis and applications. European Journal of Inorganic Chemistry, 2020, 2020(20): 1916–1937
CrossRef
Google scholar
|
[91] |
Xiang Z, Qi Y, Lu Y,
CrossRef
Pubmed
Google scholar
|
[92] |
Lin R, Yu W, Chen X,
CrossRef
Pubmed
Google scholar
|
[93] |
Xu J, Lee S S, Seo H,
CrossRef
Pubmed
Google scholar
|
[94] |
Park J, Choi Y, Chang H,
CrossRef
Pubmed
Google scholar
|
[95] |
Xue T, Xu C, Wang Y,
CrossRef
Pubmed
Google scholar
|
[96] |
Liu P, Zhou Y, Shi X,
CrossRef
Pubmed
Google scholar
|
[97] |
Yan J, Liu C, Wu Q,
CrossRef
Pubmed
Google scholar
|
[98] |
Xu W, Lou Y, Chen W,
CrossRef
Google scholar
|
[99] |
Samui A, Pal K, Karmakar P,
CrossRef
Pubmed
Google scholar
|
[100] |
Zhang H, Zhang Q, Liu C,
CrossRef
Pubmed
Google scholar
|
[101] |
He Y, Xiong T, He S,
CrossRef
Google scholar
|
[102] |
Zhang Y, Lin L, Liu L,
CrossRef
Pubmed
Google scholar
|
[103] |
Kim K, Lee S, Jin E,
CrossRef
Pubmed
Google scholar
|
[104] |
Wu M, Liu X, Bai H,
CrossRef
Pubmed
Google scholar
|
[105] |
Chai Z, Hu X, Lu W. Cell membrane-coated nanoparticles for tumor-targeted drug delivery. Science China Materials, 2017, 60(6): 504–510
CrossRef
Google scholar
|
[106] |
Wan X, Song L, Pan W,
CrossRef
Pubmed
Google scholar
|
[107] |
Owens E A, Henary M, El Fakhri G,
CrossRef
Pubmed
Google scholar
|
[108] |
Liu J, Liu Z, Wu D. Multifunctional hypoxia imaging nanoparticles: multifunctional tumor imaging and related guided tumor therapy. International Journal of Nanomedicine, 2019, 14: 707–719
CrossRef
Pubmed
Google scholar
|
[109] |
Sun J, Wang J, Hu W,
CrossRef
Pubmed
Google scholar
|
[110] |
Ouyang Z, Li D, Xiong Z,
CrossRef
Pubmed
Google scholar
|
[111] |
Zhou G, Wang Y S, Jin Z,
CrossRef
Google scholar
|
[112] |
Wang Y, Wu W, Mao D,
CrossRef
Google scholar
|
[113] |
Chen Y, Li Z H, Pan P,
CrossRef
Pubmed
Google scholar
|
[114] |
Peller M, Böll K, Zimpel A,
CrossRef
Google scholar
|
[115] |
McLeod S M, Robison L, Parigi G,
CrossRef
Pubmed
Google scholar
|
[116] |
Yao J, Liu Y, Wang J,
CrossRef
Pubmed
Google scholar
|
[117] |
Ebrahimpour A, Riahi Alam N, Abdolmaleki P,
CrossRef
Google scholar
|
[118] |
Zhou H, Qi M, Shao J,
CrossRef
Google scholar
|
[119] |
Guo C, Xu S, Arshad A,
CrossRef
Pubmed
Google scholar
|
[120] |
Zhu W, Chen M, Liu Y,
CrossRef
Pubmed
Google scholar
|
[121] |
Pu Y, Zhu Y, Qiao Z,
CrossRef
Pubmed
Google scholar
|
[122] |
Wan S S, Cheng Q, Zeng X,
CrossRef
Pubmed
Google scholar
|
[123] |
Zhu Y, Xin N, Qiao Z,
CrossRef
Pubmed
Google scholar
|
[124] |
Cai W, Gao H, Chu C,
CrossRef
Pubmed
Google scholar
|
[125] |
Sun X, He G, Xiong C,
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |