Nanodiamonds as nanomaterial for biomedical field
Sarah GARIFO, Dimitri STANICKI, Gamze AYATA, Robert N. MULLER, Sophie LAURENT
Nanodiamonds as nanomaterial for biomedical field
Recent advances in nanotechnology have attracted significant attention to nanodiamonds (NDs) in both industrial and research areas thanks to their remarkable intrinsic properties: large specific area, poor cytotoxicity, chemical resistance, magnetic and optical properties, ease of large-scale production, and surface reactivity make them suitable for numerous applications, including electronics, optics, sensors, polishing materials, and more recently, biological purposes. Growing interest in diamond platforms for bioimaging and chemotherapy is observed. Given the outstanding features of these particles and their ease of tuning, current and future applications in medicine have the potential to display innovative imaging applications and to be used as tools for monitoring and tracking drug delivery in vivo.
nanodiamond / scale-up synthesis / bioimaging / hyperpolarization / drug delivery
[1] |
Tsakalakos T, Ovid’ko I A, Vasudevan A K, eds. Nanostructures: Synthesis, Functional Properties and Applications. Springer Netherlands, 2003
CrossRef
Google scholar
|
[2] |
Bae K H, Chung H J, Park T G. Nanomaterials for cancer therapy and imaging. Molecules and Cells, 2011, 31(4): 295–302
CrossRef
Pubmed
Google scholar
|
[3] |
Jeevanandam J, Barhoum A, Chan Y S,
CrossRef
Pubmed
Google scholar
|
[4] |
Afandi A, Howkins A, Boyd I W,
CrossRef
Pubmed
Google scholar
|
[5] |
Yang N, ed. Novel Aspects of Diamond: From Growth to Applications. 2nd ed. Cham, Switzerland: Springer Nature Switzerland AG, 2019
CrossRef
Google scholar
|
[6] |
Turner S, Lebedev O I, Shenderova O,
CrossRef
Google scholar
|
[7] |
Ho D, ed. Nanodiamonds: Applications in Biology and Nanoscale Medicine. Springer US, 2010
CrossRef
Google scholar
|
[8] |
Devasena T. Therapeutic and Diagnostic Nanomaterials. Springer Singapore, 2017
|
[9] |
Donnet C, Erdemir A, eds. Tribology of Diamond-like Carbon Films: Fundamentals and Applications. Springer US, 2008
CrossRef
Google scholar
|
[10] |
Ashfold M N R, Goss J P, Green B L,
CrossRef
Google scholar
|
[11] |
Bogatyreva G P, Marinich M A, Ishchenko E V,
CrossRef
Google scholar
|
[12] |
Lai H, Stenzel M H, Xiao P. Surface engineering and applications of nanodiamonds in cancer treatment and imaging. International Materials Reviews, 2020, 65(4): 189–225
CrossRef
Google scholar
|
[13] |
Eivazzadeh-Keihan R, Maleki A, de la Guardia M,
CrossRef
Pubmed
Google scholar
|
[14] |
Grausova L, Bacakova L, Kromka A,
CrossRef
Pubmed
Google scholar
|
[15] |
Chauhan S, Jain N, Nagaich U. Nanodiamonds with powerful ability for drug delivery and biomedical applications: Recent updates on invivo study and patents. Journal of Pharmaceutical Analysis, 2020, 10(1): 1–12
CrossRef
Pubmed
Google scholar
|
[16] |
Balek L, Buchtova M, Kunova Bosakova M,
CrossRef
Pubmed
Google scholar
|
[17] |
Liu Y Y, Chang B M, Chang H C. Nanodiamond-enabled biomedical imaging. Nanomedicine, 2020, 15(16): 1599–1616
CrossRef
Pubmed
Google scholar
|
[18] |
Terada D, Genjo T, Segawa T F,
CrossRef
Pubmed
Google scholar
|
[19] |
Panich A M, Sergeev N A, Shames A I,
CrossRef
Google scholar
|
[20] |
Gruen D M, Shenderova O A, VulA, eds. Synthesis, Properties and Applications of Ultrananocrystalline Diamond. Springer, 2005, 192: 241–252
|
[21] |
Tamburri E, Orlanducci S, Reina G,
CrossRef
Google scholar
|
[22] |
Khachatryan A Kh, Aloyan S G, May P W,
CrossRef
Google scholar
|
[23] |
Butler J E, Sumant A V. The CVD of nanodiamond materials. Chemical Vapor Deposition, 2008, 14(7–8): 145–160
CrossRef
Google scholar
|
[24] |
Arnault J C, ed. Nanodiamonds: Advanced Material Analysis, Properties and Applications. Elsevier, 2017
|
[25] |
Barnard A S. Stability of diamond at the nanoscale. In: Shenderova O A, Gruen D M, eds. Ultananocrystalline Diamond. 2nd ed. Elsevier, 2012, 3–52
CrossRef
Google scholar
|
[26] |
Dolmatov V Y. Detonation nanodiamonds: Synthesis, structure, properties and applications. Uspekhi Khimii, 2007, 76(4): 375–397
CrossRef
Google scholar
|
[27] |
Osswald S, Yushin G, Mochalin V,
CrossRef
Pubmed
Google scholar
|
[28] |
Mochalin V N, Shenderova O, Ho D,
CrossRef
Pubmed
Google scholar
|
[29] |
Pentecost A, Gour S, Mochalin V,
CrossRef
Pubmed
Google scholar
|
[30] |
Peristyy A A, Fedyanina O N, Paull B,
CrossRef
Pubmed
Google scholar
|
[31] |
Rehor I, Slegerova J, Kucka J,
CrossRef
Pubmed
Google scholar
|
[32] |
Reina G, Zhao L, Bianco A,
CrossRef
Pubmed
Google scholar
|
[33] |
Boudou J P, Curmi P A, Jelezko F,
CrossRef
Pubmed
Google scholar
|
[34] |
Schrand A M, Huang H, Carlson C,
CrossRef
Pubmed
Google scholar
|
[35] |
Spitsyn B V, Gradoboev M N, Galushko T B,
|
[36] |
Choi E Y, Kim K, Kim C K,
CrossRef
Pubmed
Google scholar
|
[37] |
Zhang X, Fu C, Feng L,
CrossRef
Google scholar
|
[38] |
Krueger A. The structure and reactivity of nanoscale diamond. Journal of Materials Chemistry, 2008, 18(13): 1485–1492
CrossRef
Google scholar
|
[39] |
Jariwala D H, Patel D, Wairkar S. Surface functionalization of nanodiamonds for biomedical applications. Materials Science and Engineering C, 2020, 113: 110996
CrossRef
Pubmed
Google scholar
|
[40] |
Shenderova O, Koscheev A, Zaripov N,
CrossRef
Google scholar
|
[41] |
Ackermann J, Krueger A. Efficient surface functionalization of detonation nanodiamond using ozone under ambient conditions. Nanoscale, 2019, 11(16): 8012–8019
CrossRef
Pubmed
Google scholar
|
[42] |
Kume A, Mochalin V N. Sonication-assisted hydrolysis of ozone oxidized detonation nanodiamond. Diamond and Related Materials, 2020, 103: 107705–107711
CrossRef
Google scholar
|
[43] |
Ackermann J, Krueger A. Highly sensitive and reproducible quantification of oxygenated surface groups on carbon nanomaterials. Carbon, 2020, 163(163): 56–62
CrossRef
Google scholar
|
[44] |
Heyer S, Janssen W, Turner S,
CrossRef
Pubmed
Google scholar
|
[45] |
Sun Y, Olsén P, Waag T,
CrossRef
Google scholar
|
[46] |
Whitlow J, Pacelli S, Paul A. Multifunctional nanodiamonds in regenerative medicine: Recent advances and future directions. Journal of Controlled Release, 2017, 261(261): 62–86
CrossRef
Pubmed
Google scholar
|
[47] |
Krueger A, Stegk J, Liang Y,
CrossRef
Pubmed
Google scholar
|
[48] |
Bumb A, Sarkar S K, Billington N,
CrossRef
Pubmed
Google scholar
|
[49] |
Jarre G, Liang Y, Betz P,
CrossRef
Pubmed
Google scholar
|
[50] |
Lang D, Krueger A. The Prato reaction on nanodiamond: Surface functionalization by formation of pyrrolidine rings. Diamond and Related Materials, 2011, 20(2): 101–104
CrossRef
Google scholar
|
[51] |
Lang D, Krueger A. Functionalizing nanodiamond particles with N-heterocyclic iminium bromides and dicyano methanides. Diamond and Related Materials, 2017, 79: 102–107
CrossRef
Google scholar
|
[52] |
Girard H A, Arnault J C, Perruchas S,
CrossRef
Google scholar
|
[53] |
Girard H A, El-Kharbachi A, Garcia-Argote S,
CrossRef
Pubmed
Google scholar
|
[54] |
Nehlig E, Garcia-Argote S, Feuillastre S,
CrossRef
Pubmed
Google scholar
|
[55] |
Claveau S, Nehlig É, Garcia-Argote S,
CrossRef
Pubmed
Google scholar
|
[56] |
Liu Y, Khabashesku V N, Halas N J. Fluorinated nanodiamond as a wet chemistry precursor for diamond coatings covalently bonded to glass surface. Journal of the American Chemical Society, 2005, 127(11): 3712–3713
CrossRef
Pubmed
Google scholar
|
[57] |
Lisichkin G V, Kulakova I I, Gerasimov Y A,
CrossRef
Google scholar
|
[58] |
Bradac C, Osswald S. Effect of structure and composition of nanodiamond powders on thermal stability and oxidation kinetics. Carbon, 2018, 132: 616–622
CrossRef
Google scholar
|
[59] |
Xu X, Yu Z. Influence of thermal oxidation on as-synthesized detonation nanodiamond. Particuology, 2012, 10(3): 339–344
CrossRef
Google scholar
|
[60] |
Shenderova O, Petrov I, Walsh J,
CrossRef
Google scholar
|
[61] |
Apolonskaya I A, Tyurnina A V, Kopylov P G,
CrossRef
Google scholar
|
[62] |
Gaebel T, Bradac C, Chen J,
CrossRef
Google scholar
|
[63] |
Sotoma S, Hsieh F J, Chen Y W,
CrossRef
Pubmed
Google scholar
|
[64] |
Li L, Tian L, Zhao W,
CrossRef
Google scholar
|
[65] |
Terada D, Sotoma S, Harada Y,
CrossRef
Pubmed
Google scholar
|
[66] |
Wu Y Z, Weil T. Nanodiamonds for biological applications. Physical Sciences Reviews, 2017, 2(6): UNSP 20160104
CrossRef
Google scholar
|
[67] |
Prabhakar N, Rosenholm J M. Nanodiamonds for advanced optical bioimaging and beyond. Current Opinion in Colloid & Interface Science, 2019, 39: 220–231
CrossRef
Google scholar
|
[68] |
Dworak N, Wnuk M, Zebrowski J,
CrossRef
Google scholar
|
[69] |
Moche H, Paget V, Chevalier D,
CrossRef
Pubmed
Google scholar
|
[70] |
Zhang Q, Mochalin V N, Neitzel I,
CrossRef
Pubmed
Google scholar
|
[71] |
Wu X, Bruschi M, Waag T,
CrossRef
Pubmed
Google scholar
|
[72] |
Zhang T, Cui H, Fang C Y,
CrossRef
Pubmed
Google scholar
|
[73] |
Manus L M, Mastarone D J, Waters E A,
CrossRef
Pubmed
Google scholar
|
[74] |
Panich A M, Salti M, Goren S D,
CrossRef
Google scholar
|
[75] |
Zhao L, Shiino A, Qin H,
CrossRef
Pubmed
Google scholar
|
[76] |
Dutta P, Martinez G V, Gillies R J. Nanodiamond as a new hyperpolarizing agent and its 13C MRS. The Journal of Physical Chemistry Letters, 2014, 5(3): 597–600
CrossRef
Pubmed
Google scholar
|
[77] |
Waddington D E J, Sarracanie M, Salameh N,
CrossRef
Pubmed
Google scholar
|
[78] |
Waddington D E J, Sarracanie M, Zhang H,
CrossRef
Pubmed
Google scholar
|
[79] |
Waddington D E J, Boele T, Rej E,
CrossRef
Pubmed
Google scholar
|
[80] |
Say J M, van Vreden C, Reilly D J,
CrossRef
Pubmed
Google scholar
|
[81] |
Meinhardt T, Lang D, Dill H,
CrossRef
Google scholar
|
[82] |
Zhang T, Neumann A, Lindlau J,
CrossRef
Pubmed
Google scholar
|
[83] |
Chow E K, Zhang X-Q, Chen M,
CrossRef
Google scholar
|
[84] |
Wang D, Tong Y, Li Y,
CrossRef
Google scholar
|
[85] |
Liu K K, Zheng W W, Wang C C,
CrossRef
Pubmed
Google scholar
|
[86] |
Dong Y, Cao R, Li Y,
CrossRef
Google scholar
|
[87] |
Li X, Shao J, Qin Y,
CrossRef
Google scholar
|
[88] |
Zhang X Q, Chen M, Lam R,
CrossRef
Pubmed
Google scholar
|
[89] |
Purtov K, Petunin A, Inzhevatkin E,
CrossRef
Pubmed
Google scholar
|
[90] |
Inzhevatkin E, Baron A, Maksimov N,
CrossRef
Google scholar
|
[91] |
Suliman S, Mustafa K, Krueger A,
CrossRef
Pubmed
Google scholar
|
[92] |
Okamoto M, John B. Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Progress in Polymer Science, 2013, 38(10–11): 1487–1503
CrossRef
Google scholar
|
[93] |
Chang Y R, Lee H Y, Chen K,
CrossRef
Pubmed
Google scholar
|
[94] |
Parveen S, Misra R, Sahoo S K. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8(2): 147–166
CrossRef
Pubmed
Google scholar
|
[95] |
Dang X, Bardhan N M, Qi J,
CrossRef
Pubmed
Google scholar
|
[96] |
Su L J, Wu M S, Hui Y Y,
CrossRef
Pubmed
Google scholar
|
[97] |
Steinberg I, Huland D M, Vermesh O,
CrossRef
Pubmed
Google scholar
|
[98] |
Laurent S, Henoumont C, Stanicki D,
CrossRef
Google scholar
|
[99] |
Lipani E, Laurent S, Surin M,
CrossRef
Pubmed
Google scholar
|
[100] |
Guo C, Hu J, Bains A,
CrossRef
Pubmed
Google scholar
|
[101] |
Carniato F, Tei L, Botta M. Gd-based mesoporous silica nanoparticles as MRI probes: Gd-based mesoporous silica nanoparticles as MRI probes. European Journal of Inorganic Chemistry, 2018, 2018(46): 4936–4954
CrossRef
Google scholar
|
[102] |
Pellico J, Ellis C M, Davis J J. Nanoparticle-based paramagnetic contrast agents for magnetic resonance imaging. Contrast Media & Molecular Imaging, 2019, UNSP 1845637
CrossRef
Pubmed
Google scholar
|
[103] |
Rammohan N, MacRenaris K W, Moore L K,
CrossRef
Pubmed
Google scholar
|
[104] |
Osipov V Yu, Aleksenskiy A E, Takai K,
CrossRef
Google scholar
|
[105] |
Hou W, Toh T B, Abdullah L N,
CrossRef
Pubmed
Google scholar
|
[106] |
Caravan P, Farrar C T, Frullano L,
CrossRef
Pubmed
Google scholar
|
[107] |
Dhas M K, Utsumi H, Jawahar A,
CrossRef
Pubmed
Google scholar
|
[108] |
Jugniot N, Duttagupta I, Rivot A,
CrossRef
Pubmed
Google scholar
|
[109] |
Ajoy A, Liu K, Nazaryan R,
CrossRef
Pubmed
Google scholar
|
[110] |
Kwiatkowski G, Jähnig F, Steinhauser J,
CrossRef
Pubmed
Google scholar
|
[111] |
Ardenkjaer-Larsen J H, Fridlund B, Gram A,
CrossRef
Pubmed
Google scholar
|
[112] |
Boele T, Waddington D E J, Gaebel T,
CrossRef
Google scholar
|
[113] |
Chen Q, Schwarz I, Jelezko F,
CrossRef
Google scholar
|
[114] |
Rej E, Gaebel T, Boele T,
CrossRef
Pubmed
Google scholar
|
[115] |
Merkel T J, DeSimone J M. Dodging drug-resistant cancer with diamonds. Science Translational Medicine, 2011, 3(73): 73ps8
CrossRef
Pubmed
Google scholar
|
[116] |
Wu Y, Ermakova A, Liu W,
CrossRef
Google scholar
|
[117] |
Gismondi A, Reina G, Orlanducci S,
CrossRef
Pubmed
Google scholar
|
[118] |
Zhang X, Wang S, Fu C,
CrossRef
Google scholar
|
[119] |
Zwicke G L, Mansoori G A, Jeffery C J. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Reviews, 2012, 3: 18496
CrossRef
Pubmed
Google scholar
|
[120] |
Kranz C, ed. Carbon-Based Nanosensor Technology. 1st ed. Cham, Switzerland: Springer International Publishing, 2019
CrossRef
Google scholar
|
[121] |
Neburkova J, Vavra J, Cigler P. Coating nanodiamonds with biocompatible shells for applications in biology and medicine. Current Opinion in Solid State and Materials Science, 2017, 21(1): 43–53
CrossRef
Google scholar
|
[122] |
Smith A H, Robinson E M, Zhang X Q,
CrossRef
Pubmed
Google scholar
|
[123] |
Kong X L, Huang L C L, Hsu C M,
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |