Research progress of p-type Fe-based skutterudite thermoelectric materials
Xin TONG, Zhiyuan LIU, Jianglong ZHU, Ting YANG, Yonggui WANG, Ailin XIA
Research progress of p-type Fe-based skutterudite thermoelectric materials
Filled skutterudite is currently one of the most promising intermediate-temperature thermoelectric (TE) materials, having good thermoelectric transport performance and excellent mechanical properties. For the preparation of high-efficiency filled skutterudite TE devices, it is important to have p- and n-type filled skutterudite TE materials with matching performance. However, the current TE properties of p-type Fe-based filled skutterudite materials are worse than n-type filled skutterudite materials. Therefore, how to obtain high-performance p-type Fe-based filled skutterudite materials is the key to preparation of high-efficiency skutterudite-based TE devices. This review summarizes some methods for optimizing the thermal transport performance of p-type filled skutterudite materials at the atomic-molecular and nano-mesoscopic scale that have been used in recent years. These methods include doping, multi-atom filling, and use of low-dimensional structure and of nanocomposite. In addition, the synergistic optimization methods of the electrical and thermal transport parameters and advanced preparation technologies of p-type filled skutterudite materials in recent years are also briefly summarized. These optimizational methods and advanced preparation technologies can significantly improve the TE properties of p-type Fe-based filled skutterudite materials.
p-type Fe-based filled skutterudite / lattice thermal conductivity / synergistic optimization / preparation technology / thermoelectric property
[1] |
Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321(5895): 1457–1461
CrossRef
Pubmed
Google scholar
|
[2] |
Rogl G, Grytsiv A, Rogl P,
CrossRef
Google scholar
|
[3] |
Yu J, Zhao W Y, Lei B,
CrossRef
Google scholar
|
[4] |
Zhou C, Sakamoto J, Morelli D. Low-temperature thermoelectric properties of Co0.9Fe0.1Sb3-based skutterudite nanocomposites with FeSb2 nanoinclusions. Journal of Electronic Materials, 2011, 40(5): 547–550
CrossRef
Google scholar
|
[5] |
Benyahia M, Vaney J B, Leroy E,
CrossRef
Google scholar
|
[6] |
Zhang L, Duan F F, Li X D,
CrossRef
Google scholar
|
[7] |
Lei Y, Gao W S, Zheng R,
CrossRef
Google scholar
|
[8] |
Zhao W, Liu Z, Sun Z,
CrossRef
Pubmed
Google scholar
|
[9] |
Liu Z, Zhu J, Wei P,
CrossRef
Pubmed
Google scholar
|
[10] |
Liu Z Y, Zhu J L, Tong X,
CrossRef
Google scholar
|
[11] |
Tan G, Liu W, Wang S,
CrossRef
Google scholar
|
[12] |
Zhao W, Liu Z, Wei P,
CrossRef
Pubmed
Google scholar
|
[13] |
Bhandari C M. Thermoelectric transport theory. In: Rowe D M, eds. CRC Handbook of Thermoelectrics. Boca Raton, USA: CRC Press, 1995
CrossRef
Google scholar
|
[14] |
Ioffe A V, Ioffe A F. Thermal conductivity of semiconductors. Izvestiâ Akademii Nauk SSSR. Seriâ Fiziceskaâ, 1956, 20: 65–72
|
[15] |
Fröhlich H. Electrons in lattice fields. Advances in Physics, 1954, 3(11): 325–361
CrossRef
Google scholar
|
[16] |
Alexandrov A S. Lattice polarons and switching in molecular nanowires and quantum dots. In: Korkin A, Labanowski J, Gusev E,
CrossRef
Google scholar
|
[17] |
Kim H, Kim M H, Kaviany M. Lattice thermal conductivity of UO2 using ab-initio and classical molecular dynamics. Journal of Applied Physics, 2014, 115(12): 123510
CrossRef
Google scholar
|
[18] |
Caillat T, Borshchevsky A, Fleurial J P. Properties of single crystalline semiconducting CoSb3. Journal of Applied Physics, 1996, 80(8): 4442–4449
CrossRef
Google scholar
|
[19] |
Duan F, Zhang L, Dong J Y,
|
[20] |
Tan G, Chi H, Liu W,
CrossRef
Google scholar
|
[21] |
Fu L W, Yang J Y, Jiang Q H,
CrossRef
Google scholar
|
[22] |
Shaheen N, Shen X, Javed M S,
CrossRef
Google scholar
|
[23] |
Shaheen N, Javed M S, Shan H U,
CrossRef
Google scholar
|
[24] |
Bhardwaj R, Gahtori B, Johari K K,
CrossRef
Google scholar
|
[25] |
Jeitschko W, Braun D J. Synthesis and crystal structure of the iron polyphosphide FeP4. Acta Crystallographica Section B, 1978, 34(11): 3196–3201
CrossRef
Google scholar
|
[26] |
Sales B C, Mandrus D, Williams R K. Filled skutterudite antimonides: A new class of thermoelectric materials. Science, 1996, 272(5266): 1325–1328
CrossRef
Google scholar
|
[27] |
Yang J, Zhang W, Bai S Q,
CrossRef
Google scholar
|
[28] |
Kim J, Ohishi Y, Muta H,
CrossRef
Google scholar
|
[29] |
Dabral K P, Vitta S. P-type high temperature thermoelectric behavior of Dy filled CoSb3 and Fe1.5Co2.5Sb12 and their magnetic properties. ACS Applied Energy Materials, 2020, 3(7): 6644–6656
CrossRef
Google scholar
|
[30] |
Zhou C, Morelli D, Zhou X,
CrossRef
Google scholar
|
[31] |
Dong Y, Puneet P, Tritt T M,
CrossRef
Google scholar
|
[32] |
Puneet P, He J, Zhu S,
CrossRef
Google scholar
|
[33] |
Qiu P F, Liu R H, Yang J,
CrossRef
Google scholar
|
[34] |
Rogl G, Grytsiv A, Falmbigl M,
CrossRef
Google scholar
|
[35] |
Tan G J, Wang S Y, Yan Y G,
CrossRef
Google scholar
|
[36] |
Dong Y, Puneet P, Tritt T M,
CrossRef
Google scholar
|
[37] |
Ballikaya S, Uzar N, Yildirim S,
CrossRef
Google scholar
|
[38] |
Liu R, Yang J, Chen X,
CrossRef
Google scholar
|
[39] |
Rogl G, Grytsiv A, Rogl P,
CrossRef
Google scholar
|
[40] |
Park K H, Kim I H, Choi S M,
CrossRef
Google scholar
|
[41] |
Liu R, Qiu P, Shi X,
CrossRef
Google scholar
|
[42] |
Park K H, Lim Y S, Seo W S,
CrossRef
Google scholar
|
[43] |
Qiu P, Shi X, Liu R,
CrossRef
Google scholar
|
[44] |
Cho J Y, Ye Z, Tessema M M,
|
[45] |
Zhou L, Qiu P, Uher C,
CrossRef
Google scholar
|
[46] |
Geng H, Ochi T, Suzuki S,
CrossRef
Google scholar
|
[47] |
Park K H, Lee S, Seo W S,
CrossRef
Google scholar
|
[48] |
Yan Y G, Wong-Ng W, Li L,
CrossRef
Google scholar
|
[49] |
Tan G J, Wang S Y, Tang X F. Thermoelectric performance optimization in p-type CeyFe3CoSb12 skutterudites. Journal of Electronic Materials, 2014, 43(6): 1712–1717
CrossRef
Google scholar
|
[50] |
Tan G, Zheng Y, Yan Y,
CrossRef
Google scholar
|
[51] |
Dong Y, Puneet P, Tritt T M,
CrossRef
Google scholar
|
[52] |
Lee W M, Shin D K, Kim I H. Thermoelectric and transport properties of YbzFe4−xNixSb12 skutterudites. Journal of Electronic Materials, 2015, 44(6): 1432–1437
CrossRef
Google scholar
|
[53] |
Shin D K, Kim I H. Preparation and thermoelectric properties of p-type PrzFe4−xCoxSb12 skutterudites. Journal of the Korean Physical Society, 2014, 65(12): 2071–2076
CrossRef
Google scholar
|
[54] |
Dahal T, Gahlawat S, Jie Q,
CrossRef
Google scholar
|
[55] |
Dong Y, Nolas G S, Zeng X,
CrossRef
Google scholar
|
[56] |
Lee W M, Shin D K, Kim I H. Thermoelectric properties of LazFe4−xNixSb12 skutterudites. Journal of the Korean Physical Society, 2015, 66(2): 240–245
CrossRef
Google scholar
|
[57] |
Meng X F, Cai W, Liu Z H,
CrossRef
Google scholar
|
[58] |
Song K M, Shin D K, Kim I H. Synthesis and thermoelectric properties of double-filled La1−zNdzFe4−xCoxSb12 skutterudites. Journal of the Korean Physical Society, 2015, 67(9): 1597–1602
CrossRef
Google scholar
|
[59] |
Jeon B J, Shin D K, Kim I H. Synthesis and thermoelectric properties of La1−zYbzFe4−xNixSb12 skutterudites. Journal of Electronic Materials, 2016, 45(3): 1907–1913
CrossRef
Google scholar
|
[60] |
Joo G S, Shin D K, Kim I H. Synthesis and thermoelectric properties of p-type double-filled Ce1−zYbzFe4−xCoxSb12 skutterudites. Journal of Electronic Materials, 2016, 45(3): 1251–1256
CrossRef
Google scholar
|
[61] |
Shin D K, Kim I H. Electronic transport and thermoelectric properties of p-type NdzFe4−xCoxSb12 skutterudites. Journal of Electronic Materials, 2016, 45(3): 1234–1239
CrossRef
Google scholar
|
[62] |
Shin D K, Kim I H. Thermoelectric properties of p-type partially double-filled (Pr1−zNdz)yFe4−xCoxSb12 skutterudites. Journal of the Korean Physical Society, 2016, 69(5): 798–805
CrossRef
Google scholar
|
[63] |
Peng S, Sun J, Cui B,
CrossRef
Google scholar
|
[64] |
Qin D D, Liu Y, Meng X F,
CrossRef
Google scholar
|
[65] |
Woo H Y, Son G, Lee K M,
CrossRef
Google scholar
|
[66] |
Dahal T, Kim H S, Gahlawat S,
CrossRef
Google scholar
|
[67] |
Yang J, Qiu P, Liu R,
CrossRef
Google scholar
|
[68] |
Tan G, Wang S, Tang X,
CrossRef
Google scholar
|
[69] |
Hicks L D, Dresselhaus M S. Thermoelectric figure of merit of a one-dimensional conductor. Physical Review B, 1993, 47(24): 16631–16634
CrossRef
Pubmed
Google scholar
|
[70] |
Hicks L D, Dresselhaus M S. Effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B, 1993, 47(19): 12727–12731
CrossRef
Pubmed
Google scholar
|
[71] |
Hicks L D, Harman T C, Dresselhaus M S. Use of quantum-well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials. Applied Physics Letters, 1993, 63(23): 3230–3232
CrossRef
Google scholar
|
[72] |
Halperin W P. Quantum size effects in metal particles. Reviews of Modern Physics, 1986, 58(3): 533–606
CrossRef
Google scholar
|
[73] |
Dresselhaus M S, Chen G, Tang M Y,
CrossRef
Google scholar
|
[74] |
Jie Q, Zhou J, Shi X,
|
[75] |
Rogl G, Zehetbauer M, Kerber M,
CrossRef
Google scholar
|
[76] |
Tan G, Zheng Y, Tang X. High thermoelectric performance of nonequilibrium synthesized CeFe4Sb12 composite with multi-scaled nanostructures. Applied Physics Letters, 2013, 103(18): 183904
CrossRef
Google scholar
|
[77] |
Rogl G, Grytsiv A, Rogl P,
CrossRef
Google scholar
|
[78] |
Tafti M Y, Saleemi M, Toprak M S,
CrossRef
Google scholar
|
[79] |
Guo L J, Zhang Y M, Zheng Y,
CrossRef
Google scholar
|
[80] |
Guo L, Cai Z, Xu X,
CrossRef
Pubmed
Google scholar
|
[81] |
Minnich A J, Dresselhaus M S, Ren Z F,
CrossRef
Google scholar
|
[82] |
Li J F, Liu W S, Zhao L D,
CrossRef
Google scholar
|
[83] |
Yamini S A, Wang H, Ginting D,
CrossRef
Pubmed
Google scholar
|
[84] |
Sootsman J R, Kong H, Uher C,
CrossRef
Pubmed
Google scholar
|
[85] |
Tan G J, Wang S Y, Li H,
CrossRef
Google scholar
|
[86] |
Yu J, Zhao W, Zhou H,
CrossRef
Google scholar
|
[87] |
Liu Z, Zhu W, Nie X,
CrossRef
Google scholar
|
[88] |
Morelli D T, Meisner G P. Low temperature properties of the filled skutterudite CeFe4Sb12. Journal of Applied Physics, 1995, 77(8): 3777–3781
CrossRef
Google scholar
|
[89] |
Shi X, Zhang W, Chen L D,
CrossRef
Pubmed
Google scholar
|
[90] |
Guo L, Wang G, Peng K,
CrossRef
Google scholar
|
[91] |
Bae S H, Lee K H, Choi S M. Effective role of filling fraction control in p-type CexFe3CoSb12 skutterudite thermoelectric materials. Intermetallics, 2019, 105: 44–47
CrossRef
Google scholar
|
[92] |
Lee K H, Bae S H, Choi S M. Phase formation behavior and thermoelectric transport properties of p-type YbxFe3CoSb12 prepared by melt spinning and spark plasma sintering. Materials, 2019, 13(1): 87
CrossRef
Pubmed
Google scholar
|
[93] |
Kim S I, Lee K H, Mun H A,
CrossRef
Pubmed
Google scholar
|
[94] |
Zhang C, de la Mata M, Li Z,
CrossRef
Google scholar
|
[95] |
Zhang C, Ng H, Li Z,
CrossRef
Pubmed
Google scholar
|
[96] |
Meng X, Liu Z, Cui B,
CrossRef
Google scholar
|
[97] |
Meng X, Liu Y, Cui B,
CrossRef
Google scholar
|
[98] |
Jie Q, Wang H, Liu W,
CrossRef
Pubmed
Google scholar
|
[99] |
Prado-Gonjal J, Vaqueiro P, Nuttall C,
CrossRef
Google scholar
|
[100] |
Lan Y, Minnich A J, Chen G,
CrossRef
Google scholar
|
[101] |
Zhou X, Wang G, Zhang L,
CrossRef
Google scholar
|
[102] |
Szczech J R, Higgins J M, Jin S. Enhancement of the thermoelectric properties in nanoscale and nanostructured materials. Journal of Materials Chemistry, 2011, 21(12): 4037–4055
CrossRef
Google scholar
|
[103] |
Vineis C J, Shakouri A, Majumdar A,
CrossRef
Pubmed
Google scholar
|
[104] |
German R M, Suri P, Park S J. Review: Liquid phase sintering. Journal of Materials Science, 2009, 44(1): 1–39
CrossRef
Google scholar
|
[105] |
Farrer J K, Carter C B, Ravishankar N. The effects of crystallography on grain-boundary migration in alumina. Journal of Materials Science, 2006, 41(3): 661–674
CrossRef
Google scholar
|
[106] |
Valant M, Suvorov D, Pullar R C,
CrossRef
Google scholar
|
[107] |
Yu J, Zhu W, Zhao W,
CrossRef
Google scholar
|
[108] |
Poudel B, Hao Q, Ma Y,
CrossRef
Pubmed
Google scholar
|
[109] |
Yan X, Liu W, Wang H,
CrossRef
Google scholar
|
[110] |
Zhu G H, Lee H, Lan Y C,
CrossRef
Pubmed
Google scholar
|
[111] |
Yang J, Hao Q, Wang H,
CrossRef
Google scholar
|
/
〈 | 〉 |