Research progress of p-type Fe-based skutterudite thermoelectric materials

Xin TONG, Zhiyuan LIU, Jianglong ZHU, Ting YANG, Yonggui WANG, Ailin XIA

PDF(6123 KB)
PDF(6123 KB)
Front. Mater. Sci. ›› 2021, Vol. 15 ›› Issue (3) : 317-333. DOI: 10.1007/s11706-021-0563-7
REVIEW ARTICLE
REVIEW ARTICLE

Research progress of p-type Fe-based skutterudite thermoelectric materials

Author information +
History +

Abstract

Filled skutterudite is currently one of the most promising intermediate-temperature thermoelectric (TE) materials, having good thermoelectric transport performance and excellent mechanical properties. For the preparation of high-efficiency filled skutterudite TE devices, it is important to have p- and n-type filled skutterudite TE materials with matching performance. However, the current TE properties of p-type Fe-based filled skutterudite materials are worse than n-type filled skutterudite materials. Therefore, how to obtain high-performance p-type Fe-based filled skutterudite materials is the key to preparation of high-efficiency skutterudite-based TE devices. This review summarizes some methods for optimizing the thermal transport performance of p-type filled skutterudite materials at the atomic-molecular and nano-mesoscopic scale that have been used in recent years. These methods include doping, multi-atom filling, and use of low-dimensional structure and of nanocomposite. In addition, the synergistic optimization methods of the electrical and thermal transport parameters and advanced preparation technologies of p-type filled skutterudite materials in recent years are also briefly summarized. These optimizational methods and advanced preparation technologies can significantly improve the TE properties of p-type Fe-based filled skutterudite materials.

Graphical abstract

Keywords

p-type Fe-based filled skutterudite / lattice thermal conductivity / synergistic optimization / preparation technology / thermoelectric property

Cite this article

Download citation ▾
Xin TONG, Zhiyuan LIU, Jianglong ZHU, Ting YANG, Yonggui WANG, Ailin XIA. Research progress of p-type Fe-based skutterudite thermoelectric materials. Front. Mater. Sci., 2021, 15(3): 317‒333 https://doi.org/10.1007/s11706-021-0563-7

References

[1]
Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321(5895): 1457–1461
CrossRef Pubmed Google scholar
[2]
Rogl G, Grytsiv A, Rogl P, . Multifilled nanocrystalline p-type didymium-skutterudites with ZT>1.2. Intermetallics, 2010, 18(12): 2435–2444
CrossRef Google scholar
[3]
Yu J, Zhao W Y, Lei B, . Effects of Ge dopant on thermoelectric properties of barium and indium double-Filled p-type skutterudites. Journal of Electronic Materials, 2013, 42(7): 1400–1405
CrossRef Google scholar
[4]
Zhou C, Sakamoto J, Morelli D. Low-temperature thermoelectric properties of Co0.9Fe0.1Sb3-based skutterudite nanocomposites with FeSb2 nanoinclusions. Journal of Electronic Materials, 2011, 40(5): 547–550
CrossRef Google scholar
[5]
Benyahia M, Vaney J B, Leroy E, . Thermoelectric properties in double-filled Ce0.3InyFe1.5Co2.5Sb12 p-type skutterudites. Journal of Alloys and Compounds, 2017, 696(5): 1031–1038
CrossRef Google scholar
[6]
Zhang L, Duan F F, Li X D, . Intensive suppression of thermal conductivity in Nd0.6Fe2Co2Sb12−xGex through spontaneous precipitate. Journal of Applied Physics, 2013, 114(8): 083715
CrossRef Google scholar
[7]
Lei Y, Gao W S, Zheng R, . Rapid synthesis, microstructure, and thermoelectric properties of skutterudites. Journal of Alloys and Compounds, 2019, 806(25): 537–542
CrossRef Google scholar
[8]
Zhao W, Liu Z, Sun Z, . Superparamagnetic enhancement of thermoelectric performance. Nature, 2017, 549(7671): 247–251
CrossRef Pubmed Google scholar
[9]
Liu Z, Zhu J, Wei P, . Candidate for magnetic doping agent and high-temperature thermoelectric performance enhancer: Hard magnetic M-type BaFe12O19 nanometer suspension. ACS Applied Materials & Interfaces, 2019, 11(49): 45875–45884
CrossRef Pubmed Google scholar
[10]
Liu Z Y, Zhu J L, Tong X, . A review of CoSb3-based skutterudite thermoelectric materials. Journal of Advanced Ceramics, 2020, 9(6): 647–673
CrossRef Google scholar
[11]
Tan G, Liu W, Wang S, . Rapid preparation of CeFe4Sb12 skutterudite by melt spinning: Rich nanostructures and high thermoelectric performance. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(40): 12657–12668
CrossRef Google scholar
[12]
Zhao W, Liu Z, Wei P, . Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials. Nature Nanotechnology, 2017, 12(1): 55–60
CrossRef Pubmed Google scholar
[13]
Bhandari C M. Thermoelectric transport theory. In: Rowe D M, eds. CRC Handbook of Thermoelectrics. Boca Raton, USA: CRC Press, 1995
CrossRef Google scholar
[14]
Ioffe A V, Ioffe A F. Thermal conductivity of semiconductors. Izvestiâ Akademii Nauk SSSR. Seriâ Fiziceskaâ, 1956, 20: 65–72
[15]
Fröhlich H. Electrons in lattice fields. Advances in Physics, 1954, 3(11): 325–361
CrossRef Google scholar
[16]
Alexandrov A S. Lattice polarons and switching in molecular nanowires and quantum dots. In: Korkin A, Labanowski J, Gusev E, ., eds. Nanotechnology for Electronic Materials and Devices. Boston, MA, USA: Springer, 2007, 305–356
CrossRef Google scholar
[17]
Kim H, Kim M H, Kaviany M. Lattice thermal conductivity of UO2 using ab-initio and classical molecular dynamics. Journal of Applied Physics, 2014, 115(12): 123510
CrossRef Google scholar
[18]
Caillat T, Borshchevsky A, Fleurial J P. Properties of single crystalline semiconducting CoSb3. Journal of Applied Physics, 1996, 80(8): 4442–4449
CrossRef Google scholar
[19]
Duan F, Zhang L, Dong J Y, . Thermoelectric properties of Sn substituted p-type Nd filled skutterudites. Journal of Applied Physics, 2015, 639(5): 68–73
[20]
Tan G, Chi H, Liu W, . Toward high thermoelectric performance p-type FeSb2.2Te0.8 via in situ formation of InSb nanoinclusions. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2015, 3(32): 8372–8380
CrossRef Google scholar
[21]
Fu L W, Yang J Y, Jiang Q H, . Thermoelectric performance ehancement of CeFe4Sb12 p-type skutterudite by disorder on the Sb4 rings induced by Te doping and nanopores. Journal of Electronic Materials, 2016, 45(3): 1240–1244
CrossRef Google scholar
[22]
Shaheen N, Shen X, Javed M S, . High-temperature thermoelectric properties of Ge-substituted p-type Nd-filled skutterudites. Journal of Electronic Materials, 2017, 46(5): 2958–2963
CrossRef Google scholar
[23]
Shaheen N, Javed M S, Shan H U, . Enhanced thermoelectric properties in Ge-doped and single-filled skutterudites prepared by unique melt-spinning method. Ceramics International, 2018, 44(11): 12610–12614
CrossRef Google scholar
[24]
Bhardwaj R, Gahtori B, Johari K K, . Collective effect of Fe and Se to improve the thermoelectric performance of unfilled p-type CoSb3 skutterudites. ACS Applied Energy Materials, 2019, 2(2): 1067–1076
CrossRef Google scholar
[25]
Jeitschko W, Braun D J. Synthesis and crystal structure of the iron polyphosphide FeP4. Acta Crystallographica Section B, 1978, 34(11): 3196–3201
CrossRef Google scholar
[26]
Sales B C, Mandrus D, Williams R K. Filled skutterudite antimonides: A new class of thermoelectric materials. Science, 1996, 272(5266): 1325–1328
CrossRef Google scholar
[27]
Yang J, Zhang W, Bai S Q, . Dual-frequency resonant phonon scattering in BaxRyCo4Sb12 (R= La, Ce, and Sr). Applied Physics Letters, 2007, 90(19): 192111
CrossRef Google scholar
[28]
Kim J, Ohishi Y, Muta H, . Enhanced thermoelectric properties of Ga and Ce double-filled p-type skutterudites. Materials Transactions, 2019, 60(6): 1078–1082
CrossRef Google scholar
[29]
Dabral K P, Vitta S. P-type high temperature thermoelectric behavior of Dy filled CoSb3 and Fe1.5Co2.5Sb12 and their magnetic properties. ACS Applied Energy Materials, 2020, 3(7): 6644–6656
CrossRef Google scholar
[30]
Zhou C, Morelli D, Zhou X, . Thermoelectric properties of p-type Yb-filled skutterudite YbxFeyCo4−ySb12. Intermetallics, 2011, 19(10): 1390–1393
CrossRef Google scholar
[31]
Dong Y, Puneet P, Tritt T M, . High temperature thermoelectric properties of p-type skutterudites BaxYbyCo4−z-FezSb12. Journal of Applied Physics, 2012, 112(8): 083718
CrossRef Google scholar
[32]
Puneet P, He J, Zhu S, . Thermoelectric properties and Kondo behavior in indium incorporated p-type Ce0.9Fe3.5Ni0.5Sb12 skutterudites. Journal of Applied Physics, 2012, 112(3): 033710
CrossRef Google scholar
[33]
Qiu P F, Liu R H, Yang J, . Thermoelectric properties of Ni-doped CeFe4Sb12 skutterudites. Journal of Applied Physics, 2012, 111(2): 023705
CrossRef Google scholar
[34]
Rogl G, Grytsiv A, Falmbigl M, . Thermoelectric properties of p-type didymium (DD) based skutterudites DDy(Fe1−xNix)4Sb12 (0.13≤x≤0.25, 0.46≤y≤0.68). Journal of Alloys and Compounds, 2012, 537(5): 242–249
CrossRef Google scholar
[35]
Tan G J, Wang S Y, Yan Y G, . Enhanced thermoelectric performance in p-type Ca0.5Ce0.5Fe4−xNixSb12 skutterudites by adjusting the carrier concentration. Journal of Alloys and Compounds, 2012, 513(5): 328–333
CrossRef Google scholar
[36]
Dong Y, Puneet P, Tritt T M, . High-temperature thermoelectric properties of p-type skutterudites YbxCo3FeSb12. Physica Status Solidi: Rapid Research Letters, 2013, 7(6): 418–420
CrossRef Google scholar
[37]
Ballikaya S, Uzar N, Yildirim S, . Lower thermal conductivity and higher thermoelectric performance of Fe-substituted and Ce, Yb double-filled p-type skutterudites. Journal of Electronic Materials, 2013, 42(7): 1622–1627
CrossRef Google scholar
[38]
Liu R, Yang J, Chen X, . P-type skutterudites RxMyFe3CoSb12 (R, M= Ba, Ce, Nd, and Yb): Effectiveness of double-filling for the lattice thermal conductivity reduction. Intermetallics, 2011, 19(11): 1747–1751
CrossRef Google scholar
[39]
Rogl G, Grytsiv A, Rogl P, . A new generation of p-type didymium skutterudites with high ZT. Intermetallics, 2011, 19(4): 546–555
CrossRef Google scholar
[40]
Park K H, Kim I H, Choi S M, . Preparation and thermoelectric properties of p-type Yb-filled skutterudites. Journal of Electronic Materials, 2013, 42(7): 1377–1381
CrossRef Google scholar
[41]
Liu R, Qiu P, Shi X, . Influence of Ru substitution on the thermoelectric properties of Ce(Fe1−xRux)4Sb12 solid solutions. Journal of the Physical Society of Japan, 2013, 82(12): 124608
CrossRef Google scholar
[42]
Park K H, Lim Y S, Seo W S, . Effects of heat treatment on the thermoelectric properties of Yb-filled skutterudites. Journal of the Korean Physical Society, 2013, 63(9): 1764–1767
CrossRef Google scholar
[43]
Qiu P, Shi X, Liu R, . Thermoelectric properties of manganese-doped p-type skutterudites CeyFe4−xMnxSb12. Functional Materials Letters, 2013, 6(5): 1340003
CrossRef Google scholar
[44]
Cho J Y, Ye Z, Tessema M M, . Thermoelectric performance of p-type skutterudites YbxFe4−yPtySb12 (0.8≤x≤1, y = 1 and 0.5). Journal of Applied Physics, 2013, 113(14): 224
[45]
Zhou L, Qiu P, Uher C, . Thermoelectric properties of p-type YbxLayFe2.7Co1.3Sb12 double-filled skutterudites. Intermetallics, 2013, 32: 209–213
CrossRef Google scholar
[46]
Geng H, Ochi T, Suzuki S, . Thermoelectric properties of multifilled skutterudites with La as the main filler. Journal of Electronic Materials, 2013, 42(7): 1999–2005
CrossRef Google scholar
[47]
Park K H, Lee S, Seo W S, . Synthesis and thermoelectric properties of CezFe4−xCoxSb12 skutterudites. Journal of the Korean Physical Society, 2014, 64(1): 84–88
CrossRef Google scholar
[48]
Yan Y G, Wong-Ng W, Li L, . Structures and thermoelectric properties of double-filled (CaxCe1−x)Fe4Sb12 skutterudites. Journal of Solid State Chemistry, 2014, 218: 221–229
CrossRef Google scholar
[49]
Tan G J, Wang S Y, Tang X F. Thermoelectric performance optimization in p-type CeyFe3CoSb12 skutterudites. Journal of Electronic Materials, 2014, 43(6): 1712–1717
CrossRef Google scholar
[50]
Tan G, Zheng Y, Yan Y, . Preparation and thermoelectric properties of p-type filled skutterudites CeyFe4−xNixSb12. Journal of Alloys and Compounds, 2014, 584(25): 216–221
CrossRef Google scholar
[51]
Dong Y, Puneet P, Tritt T M, . High-temperature thermoelectric properties of p-type skutterudites Ba0.15YbxCo3FeSb12 and YbyCo3FeSb9As3. Journal of Materials Science, 2015, 50(1): 34–39
CrossRef Google scholar
[52]
Lee W M, Shin D K, Kim I H. Thermoelectric and transport properties of YbzFe4−xNixSb12 skutterudites. Journal of Electronic Materials, 2015, 44(6): 1432–1437
CrossRef Google scholar
[53]
Shin D K, Kim I H. Preparation and thermoelectric properties of p-type PrzFe4−xCoxSb12 skutterudites. Journal of the Korean Physical Society, 2014, 65(12): 2071–2076
CrossRef Google scholar
[54]
Dahal T, Gahlawat S, Jie Q, . Thermoelectric and mechanical properties on misch metal filled p-type skutterudites Mm0.9Fe4−xCoxSb12. Journal of Applied Physics, 2015, 117(5): 055101
CrossRef Google scholar
[55]
Dong Y, Nolas G S, Zeng X, . High temperature thermoelectric properties of BaxYbyFe3CoSb12 p-type skutterudites. Journal of Materials Research, 2015, 30(17): 2558–2563
CrossRef Google scholar
[56]
Lee W M, Shin D K, Kim I H. Thermoelectric properties of LazFe4−xNixSb12 skutterudites. Journal of the Korean Physical Society, 2015, 66(2): 240–245
CrossRef Google scholar
[57]
Meng X F, Cai W, Liu Z H, . Enhanced thermoelectric performance of p-type filled skutterudites via the coherency strain fields from spinodal decomposition. Acta Materialia, 2015, 98(1): 405–415
CrossRef Google scholar
[58]
Song K M, Shin D K, Kim I H. Synthesis and thermoelectric properties of double-filled La1−zNdzFe4−xCoxSb12 skutterudites. Journal of the Korean Physical Society, 2015, 67(9): 1597–1602
CrossRef Google scholar
[59]
Jeon B J, Shin D K, Kim I H. Synthesis and thermoelectric properties of La1−zYbzFe4−xNixSb12 skutterudites. Journal of Electronic Materials, 2016, 45(3): 1907–1913
CrossRef Google scholar
[60]
Joo G S, Shin D K, Kim I H. Synthesis and thermoelectric properties of p-type double-filled Ce1−zYbzFe4−xCoxSb12 skutterudites. Journal of Electronic Materials, 2016, 45(3): 1251–1256
CrossRef Google scholar
[61]
Shin D K, Kim I H. Electronic transport and thermoelectric properties of p-type NdzFe4−xCoxSb12 skutterudites. Journal of Electronic Materials, 2016, 45(3): 1234–1239
CrossRef Google scholar
[62]
Shin D K, Kim I H. Thermoelectric properties of p-type partially double-filled (Pr1−zNdz)yFe4−xCoxSb12 skutterudites. Journal of the Korean Physical Society, 2016, 69(5): 798–805
CrossRef Google scholar
[63]
Peng S, Sun J, Cui B, . Enhanced thermoelectric and mechanical properties of p-type skutterudites with in-situ formed Fe3Si nanoprecipitate. Inorganic Chemistry Frontiers, 2017, 4(10): 1697–1703
CrossRef Google scholar
[64]
Qin D D, Liu Y, Meng X F, . Graphene-enhanced thermoelectric properties of p-type skutterudites. Chinese Physics B, 2018, 27(4): 048402
CrossRef Google scholar
[65]
Woo H Y, Son G, Lee K M, . Thermal conductivity reduction by tuning the rattler fraction in a p-type CeyYb1−yFe3CoSb12 double-filled skutterudite. Journal of the Korean Physical Society, 2020, 77(8): 667–672
CrossRef Google scholar
[66]
Dahal T, Kim H S, Gahlawat S, . Transport and mechanical properties of the double-filled p-type skutterudites La0.68Ce0.22Fe4−xCoxSb12. Acta Materialia, 2016, 117: 13–22
CrossRef Google scholar
[67]
Yang J, Qiu P, Liu R, . Trends in electrical transport of p-type skutterudites RFe4Sb12 (R= Na, K, Ca, Sr, Ba, La, Ce, Pr, Yb) from first-principles calculations and Boltzmann transport theory. Physical Review B, 2011, 84(23): 235205
CrossRef Google scholar
[68]
Tan G, Wang S, Tang X, . Preparation and thermoelectric properties of Ga-substituted p-type fully filled skutterudites CeFe4−xGaxSb12. Journal of Solid State Chemistry, 2012, 196: 203–208
CrossRef Google scholar
[69]
Hicks L D, Dresselhaus M S. Thermoelectric figure of merit of a one-dimensional conductor. Physical Review B, 1993, 47(24): 16631–16634
CrossRef Pubmed Google scholar
[70]
Hicks L D, Dresselhaus M S. Effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B, 1993, 47(19): 12727–12731
CrossRef Pubmed Google scholar
[71]
Hicks L D, Harman T C, Dresselhaus M S. Use of quantum-well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials. Applied Physics Letters, 1993, 63(23): 3230–3232
CrossRef Google scholar
[72]
Halperin W P. Quantum size effects in metal particles. Reviews of Modern Physics, 1986, 58(3): 533–606
CrossRef Google scholar
[73]
Dresselhaus M S, Chen G, Tang M Y, . New directions for low-dimensional thermoelectric materials. Advanced Materials, 2007, 19(8): 1043–1053
CrossRef Google scholar
[74]
Jie Q, Zhou J, Shi X, . Strong impact of grain boundaries on the thermoelectric properties of non-equilibrium synthesized p-type Ce1.05Fe4Sb12.04 filled skutterudites with nanostructure. arXiv, 2010, 1006: 5715
[75]
Rogl G, Zehetbauer M, Kerber M, . Impact of ball milling and high-pressure torsion on the microstructure and thermoelectric properties of p- and n-type Sb-based skutterudites. Materials Science Forum, 2011, 667–669: 1089–1094
CrossRef Google scholar
[76]
Tan G, Zheng Y, Tang X. High thermoelectric performance of nonequilibrium synthesized CeFe4Sb12 composite with multi-scaled nanostructures. Applied Physics Letters, 2013, 103(18): 183904
CrossRef Google scholar
[77]
Rogl G, Grytsiv A, Rogl P, . Nanostructuring of p- and n-type skutterudites reaching figures of merit of approximately 1.3 and 1.6, respectively. Acta Materialia, 2014, 76(1): 434–448
CrossRef Google scholar
[78]
Tafti M Y, Saleemi M, Toprak M S, . Fabrication and characterization of nanostructured thermoelectric FexCo1−xSb3. Open Chemistry, 2014, 13(1): 629–635
CrossRef Google scholar
[79]
Guo L J, Zhang Y M, Zheng Y, . Super-rapid preparation of nanostructured NdxFe3CoSb12 compounds and their improved thermoelectric performance. Journal of Electronic Materials, 2016, 45(3): 1271–1277
CrossRef Google scholar
[80]
Guo L, Cai Z, Xu X, . Raising the thermoelectric performance of Fe3CoSb12 skutterudites via Nd filling and in-situ nanostructuring. Journal of Nanoscience and Nanotechnology, 2016, 16(4): 3841–3847
CrossRef Pubmed Google scholar
[81]
Minnich A J, Dresselhaus M S, Ren Z F, . Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy & Environmental Science, 2009, 2(5): 466–479
CrossRef Google scholar
[82]
Li J F, Liu W S, Zhao L D, . High-performance nanostructured thermoelectric materials. NPG Asia Materials, 2010, 2(4): 152–158
CrossRef Google scholar
[83]
Yamini S A, Wang H, Ginting D, . Thermoelectric performance of n-type (PbTe)0.75(PbS)0.15(PbSe)0.1 composites. ACS Applied Materials & Interfaces, 2014, 6(14): 11476–11483
CrossRef Pubmed Google scholar
[84]
Sootsman J R, Kong H, Uher C, . Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by synergistic nanostructuring. Angewandte Chemie International Edition, 2008, 47(45): 8618–8622
CrossRef Pubmed Google scholar
[85]
Tan G J, Wang S Y, Li H, . Enhanced thermoelectric performance in zinc substituted p-type filled skutterudites CeFe4−xZnxSb12. Journal of Solid State Chemistry, 2012, 187: 316–322
CrossRef Google scholar
[86]
Yu J, Zhao W, Zhou H, . Rapid preparation and thermoelectric properties of Ba and In double-filled p-type skutterudite bulk materials. Scripta Materialia, 2013, 68(8): 643–646
CrossRef Google scholar
[87]
Liu Z, Zhu W, Nie X, . Effects of sintering temperature on microstructure and thermoelectric properties of Ce-filled Fe4Sb12 skutterudites. Journal of Materials Science Materials in Electronics, 2019, 30(13): 12493–12499
CrossRef Google scholar
[88]
Morelli D T, Meisner G P. Low temperature properties of the filled skutterudite CeFe4Sb12. Journal of Applied Physics, 1995, 77(8): 3777–3781
CrossRef Google scholar
[89]
Shi X, Zhang W, Chen L D, . Filling fraction limit for intrinsic voids in crystals: Doping in skutterudites. Physical Review Letters, 2005, 95(18): 185503
CrossRef Pubmed Google scholar
[90]
Guo L, Wang G, Peng K, . Melt spinning synthesis of p-type skutterudites: Drastically speed up the process of high performance thermoelectrics. Scripta Materialia, 2016, 116: 26–30
CrossRef Google scholar
[91]
Bae S H, Lee K H, Choi S M. Effective role of filling fraction control in p-type CexFe3CoSb12 skutterudite thermoelectric materials. Intermetallics, 2019, 105: 44–47
CrossRef Google scholar
[92]
Lee K H, Bae S H, Choi S M. Phase formation behavior and thermoelectric transport properties of p-type YbxFe3CoSb12 prepared by melt spinning and spark plasma sintering. Materials, 2019, 13(1): 87
CrossRef Pubmed Google scholar
[93]
Kim S I, Lee K H, Mun H A, . Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science, 2015, 348(6230): 109–114
CrossRef Pubmed Google scholar
[94]
Zhang C, de la Mata M, Li Z, . Enhanced thermoelectric performance of solution-derived bismuth telluride based nanocomposites via liquid-phase sintering. Nano Energy, 2016, 30: 630–638
CrossRef Google scholar
[95]
Zhang C, Ng H, Li Z, . Minority carrier blocking to enhance the thermoelectric performance of solution-processed BixSb2−xTe3 nanocomposites via a liquid-phase sintering process. ACS Applied Materials & Interfaces, 2017, 9(14): 12501–12510
CrossRef Pubmed Google scholar
[96]
Meng X, Liu Z, Cui B, . Grain boundary engineering for achieving high thermoelectric performance in n-type skutterudites. Advanced Energy Materials, 2017, 7(13): 1602582
CrossRef Google scholar
[97]
Meng X, Liu Y, Cui B, . High thermoelectric performance of single phase p-type cerium-filled skutterudites by dislocation engineering. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(41): 20128–20137
CrossRef Google scholar
[98]
Jie Q, Wang H, Liu W, . Fast phase formation of double-filled p-type skutterudites by ball-milling and hot- pressing. Physical Chemistry Chemical Physics, 2013, 15(18): 6809–6816
CrossRef Pubmed Google scholar
[99]
Prado-Gonjal J, Vaqueiro P, Nuttall C, . Enhancing the thermoelectric properties of single and double filled p-type skutterudites synthesized by an up-scaled ball-milling process. Journal of Alloys and Compounds, 2017, 695(25): 3598–3604
CrossRef Google scholar
[100]
Lan Y, Minnich A J, Chen G, . Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Advanced Functional Materials, 2010, 20(3): 357–376
CrossRef Google scholar
[101]
Zhou X, Wang G, Zhang L, . Enhanced thermoelectric properties of Ba-filled skutterudites by grain size reduction and Ag nanoparticle inclusion. Journal of Materials Chemistry, 2012, 22(7): 2958–2964
CrossRef Google scholar
[102]
Szczech J R, Higgins J M, Jin S. Enhancement of the thermoelectric properties in nanoscale and nanostructured materials. Journal of Materials Chemistry, 2011, 21(12): 4037–4055
CrossRef Google scholar
[103]
Vineis C J, Shakouri A, Majumdar A, . Nanostructured thermoelectrics: Big efficiency gains from small features. Advanced Materials, 2010, 22(36): 3970–3980
CrossRef Pubmed Google scholar
[104]
German R M, Suri P, Park S J. Review: Liquid phase sintering. Journal of Materials Science, 2009, 44(1): 1–39
CrossRef Google scholar
[105]
Farrer J K, Carter C B, Ravishankar N. The effects of crystallography on grain-boundary migration in alumina. Journal of Materials Science, 2006, 41(3): 661–674
CrossRef Google scholar
[106]
Valant M, Suvorov D, Pullar R C, . A mechanism for low-temperature sintering. Journal of the European Ceramic Society, 2006, 26(13): 2777–2783
CrossRef Google scholar
[107]
Yu J, Zhu W, Zhao W, . Rapid fabrication of pure p-type filled skutterudites with enhanced thermoelectric properties via a reactive liquid-phase sintering. Journal of Materials Science, 2020, 55(17): 7432–7440
CrossRef Google scholar
[108]
Poudel B, Hao Q, Ma Y, . High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320(5876): 634–638
CrossRef Pubmed Google scholar
[109]
Yan X, Liu W, Wang H, . Stronger phonon scattering by larger differences in atomic mass and size in p-type half-Heuslers Hf1−xTixCoSb0.8Sn0.2. Energy & Environmental Science, 2012, 5(6): 7543–7548
CrossRef Google scholar
[110]
Zhu G H, Lee H, Lan Y C, . Increased phonon scattering by nanograins and point defects in nanostructured silicon with a low concentration of germanium. Physical Review Letters, 2009, 102(19): 196803
CrossRef Pubmed Google scholar
[111]
Yang J, Hao Q, Wang H, . Solubility study of Yb in n-type skutterudites YbxCo4Sb12 and their enhanced thermoelectric properties. Physical Review B, 2009, 80(11): 115329
CrossRef Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51872006) and the Anhui University of Technology High-Level Doctoral Student Training Program (DT17200008).

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(6123 KB)

Accesses

Citations

Detail

Sections
Recommended

/