Preparation and properties of covalent organic framework nanoparticles with high drug loading

Jian ZOU , Xiangling REN , Longfei TAN , Zhongbing HUANG , Li GOU , Xianwei MENG

Front. Mater. Sci. ›› 2021, Vol. 15 ›› Issue (3) : 465 -470.

PDF (1403KB)
Front. Mater. Sci. ›› 2021, Vol. 15 ›› Issue (3) : 465 -470. DOI: 10.1007/s11706-021-0561-9
LETTER
LETTER

Preparation and properties of covalent organic framework nanoparticles with high drug loading

Author information +
History +
PDF (1403KB)

Graphical abstract

Cite this article

Download citation ▾
Jian ZOU, Xiangling REN, Longfei TAN, Zhongbing HUANG, Li GOU, Xianwei MENG. Preparation and properties of covalent organic framework nanoparticles with high drug loading. Front. Mater. Sci., 2021, 15(3): 465-470 DOI:10.1007/s11706-021-0561-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ding X, Guo J, Feng X, . Synthesis of metallophthalocyanine covalent organic frameworks that exhibit high carrier mobility and photoconductivity. Angewandte Chemie International Edition, 2011, 50(6): 1289–1293

[2]

Feng X, Liu L, Honsho Y, . High-rate charge-carrier transport in porphyrin covalent organic frameworks: Switching from hole to electron to ambipolar conduction. Angewandte Chemie International Edition, 2012, 51(11): 2618–2622

[3]

Alahakoon S, Smaldone R. Azine-linked tetraphenylmethane (TPM) based 3D covalent organic framework (COF) for gas storage applications. Abstracts of Papers of the American Chemical Society, 2016, 252

[4]

Huang N, Chen X, Krishna R, . Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization. Angewandte Chemie International Edition, 2015, 54(10): 2986–2990

[5]

Dalapati S, Jin S, Gao J, . An azine-linked covalent organic framework. Journal of the American Chemical Society, 2013, 135(46): 17310–17313

[6]

Peng Y, Li L, Zhu C, . Intramolecular hydrogen bonding-based topology regulation of two-dimensional covalent organic frameworks. Journal of the American Chemical Society, 2020, 142(30): 13162–13169

[7]

DeBlase C R, Silberstein K E, Truong T T, . β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. Journal of the American Chemical Society, 2013, 135(45): 16821–16824

[8]

Doonan C J, Tranchemontagne D J, Glover T G, . Exceptional ammonia uptake by a covalent organic framework. Nature Chemistry, 2010, 2(3): 235–238

[9]

Ding S Y, Gao J, Wang Q, . Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction. Journal of the American Chemical Society, 2011, 133(49): 19816–19822

[10]

Li C, Ma Y, Liu H, . Asymmetric photocatalysis over robust covalent organic frameworks with tetrahydroquinoline linkage. Chinese Journal of Catalysis, 2020, 41(8): 1288–1297

[11]

Wang M, Hu M, Liu J, . Covalent organic framework-based electrochemical aptasensors for the ultrasensitive detection of antibiotics. Biosensors & Bioelectronics, 2019, 132: 8–16

[12]

Zhang T, Ma N, Ali A, . Electrochemical ultrasensitive detection of cardiac troponin I using covalent organic frameworks for signal amplification. Biosensors & Bioelectronics, 2018, 119: 176–181

[13]

Zhao H, Jin Z, Su H, . Targeted synthesis of a 2D ordered porous organic framework for drug release. Chemical Communications, 2011, 47(22): 6389–6391

[14]

Vyas V S, Vishwakarma M, Moudrakovski I, . Exploiting noncovalent interactions in an imine-based covalent organic framework for quercetin delivery. Advanced Materials, 2016, 28(39): 8749–8754

[15]

Vyas V S, Vishwakarma M, Moudrakovski I, . Exploiting noncovalent interactions in an imine-based covalent organic framework for quercetin delivery. Advanced Materials, 2016, 28(39): 8749–8754

[16]

Bai L, Phua S Z F, Lim W Q, . Nanoscale covalent organic frameworks as smart carriers for drug delivery. Chemical Communications, 2016, 52(22): 4128–4131

[17]

Côté A P, Benin A I, Ockwig N W, . Porous, crystalline, covalent organic frameworks. Science, 2005, 310(5751): 1166–1170

[18]

Wei H, Chai S, Hu N, . The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity. Chemical Communications, 2015, 51(61): 12178–12181

[19]

Zhang M, Chen J, Zhang S, . Electron beam irradiation as a general approach for the rapid synthesis of covalent organic frameworks under ambient conditions. Journal of the American Chemical Society, 2020, 142(20): 9169–9174

[20]

Biswal B P, Chandra S, Kandambeth S, . Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. Journal of the American Chemical Society, 2013, 135(14): 5328–5331

[21]

Shi H, Niu M, Tan L, . A smart all-in-one theranostic platform for CT imaging guided tumor microwave thermotherapy based on IL@ZrO2 nanoparticles. Chemical Science, 2015, 6(8): 5016–5026

[22]

Brahmachari S, Ghosh M, Dutta S, . Biotinylated amphiphile-single walled carbon nanotube conjugate for target-specific delivery to cancer cells. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2014, 2(9): 1160–1173

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1403KB)

1511

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/