Preparation and properties of covalent organic framework nanoparticles with high drug loading

Jian ZOU, Xiangling REN, Longfei TAN, Zhongbing HUANG, Li GOU, Xianwei MENG

PDF(1403 KB)
PDF(1403 KB)
Front. Mater. Sci. ›› 2021, Vol. 15 ›› Issue (3) : 465-470. DOI: 10.1007/s11706-021-0561-9
LETTER
LETTER

Preparation and properties of covalent organic framework nanoparticles with high drug loading

Author information +
History +

Graphical abstract

Cite this article

Download citation ▾
Jian ZOU, Xiangling REN, Longfei TAN, Zhongbing HUANG, Li GOU, Xianwei MENG. Preparation and properties of covalent organic framework nanoparticles with high drug loading. Front. Mater. Sci., 2021, 15(3): 465‒470 https://doi.org/10.1007/s11706-021-0561-9

References

[1]
Ding X, Guo J, Feng X, . Synthesis of metallophthalocyanine covalent organic frameworks that exhibit high carrier mobility and photoconductivity. Angewandte Chemie International Edition, 2011, 50(6): 1289–1293
CrossRef Pubmed Google scholar
[2]
Feng X, Liu L, Honsho Y, . High-rate charge-carrier transport in porphyrin covalent organic frameworks: Switching from hole to electron to ambipolar conduction. Angewandte Chemie International Edition, 2012, 51(11): 2618–2622
CrossRef Pubmed Google scholar
[3]
Alahakoon S, Smaldone R. Azine-linked tetraphenylmethane (TPM) based 3D covalent organic framework (COF) for gas storage applications. Abstracts of Papers of the American Chemical Society, 2016, 252
[4]
Huang N, Chen X, Krishna R, . Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization. Angewandte Chemie International Edition, 2015, 54(10): 2986–2990
CrossRef Pubmed Google scholar
[5]
Dalapati S, Jin S, Gao J, . An azine-linked covalent organic framework. Journal of the American Chemical Society, 2013, 135(46): 17310–17313
CrossRef Pubmed Google scholar
[6]
Peng Y, Li L, Zhu C, . Intramolecular hydrogen bonding-based topology regulation of two-dimensional covalent organic frameworks. Journal of the American Chemical Society, 2020, 142(30): 13162–13169
CrossRef Pubmed Google scholar
[7]
DeBlase C R, Silberstein K E, Truong T T, . β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. Journal of the American Chemical Society, 2013, 135(45): 16821–16824
CrossRef Pubmed Google scholar
[8]
Doonan C J, Tranchemontagne D J, Glover T G, . Exceptional ammonia uptake by a covalent organic framework. Nature Chemistry, 2010, 2(3): 235–238
CrossRef Pubmed Google scholar
[9]
Ding S Y, Gao J, Wang Q, . Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction. Journal of the American Chemical Society, 2011, 133(49): 19816–19822
CrossRef Pubmed Google scholar
[10]
Li C, Ma Y, Liu H, . Asymmetric photocatalysis over robust covalent organic frameworks with tetrahydroquinoline linkage. Chinese Journal of Catalysis, 2020, 41(8): 1288–1297
CrossRef Google scholar
[11]
Wang M, Hu M, Liu J, . Covalent organic framework-based electrochemical aptasensors for the ultrasensitive detection of antibiotics. Biosensors & Bioelectronics, 2019, 132: 8–16
CrossRef Pubmed Google scholar
[12]
Zhang T, Ma N, Ali A, . Electrochemical ultrasensitive detection of cardiac troponin I using covalent organic frameworks for signal amplification. Biosensors & Bioelectronics, 2018, 119: 176–181
CrossRef Pubmed Google scholar
[13]
Zhao H, Jin Z, Su H, . Targeted synthesis of a 2D ordered porous organic framework for drug release. Chemical Communications, 2011, 47(22): 6389–6391
CrossRef Pubmed Google scholar
[14]
Vyas V S, Vishwakarma M, Moudrakovski I, . Exploiting noncovalent interactions in an imine-based covalent organic framework for quercetin delivery. Advanced Materials, 2016, 28(39): 8749–8754
CrossRef Pubmed Google scholar
[15]
Vyas V S, Vishwakarma M, Moudrakovski I, . Exploiting noncovalent interactions in an imine-based covalent organic framework for quercetin delivery. Advanced Materials, 2016, 28(39): 8749–8754
CrossRef Pubmed Google scholar
[16]
Bai L, Phua S Z F, Lim W Q, . Nanoscale covalent organic frameworks as smart carriers for drug delivery. Chemical Communications, 2016, 52(22): 4128–4131
CrossRef Pubmed Google scholar
[17]
Côté A P, Benin A I, Ockwig N W, . Porous, crystalline, covalent organic frameworks. Science, 2005, 310(5751): 1166–1170
CrossRef Pubmed Google scholar
[18]
Wei H, Chai S, Hu N, . The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity. Chemical Communications, 2015, 51(61): 12178–12181
CrossRef Pubmed Google scholar
[19]
Zhang M, Chen J, Zhang S, . Electron beam irradiation as a general approach for the rapid synthesis of covalent organic frameworks under ambient conditions. Journal of the American Chemical Society, 2020, 142(20): 9169–9174
CrossRef Pubmed Google scholar
[20]
Biswal B P, Chandra S, Kandambeth S, . Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. Journal of the American Chemical Society, 2013, 135(14): 5328–5331
CrossRef Pubmed Google scholar
[21]
Shi H, Niu M, Tan L, . A smart all-in-one theranostic platform for CT imaging guided tumor microwave thermotherapy based on IL@ZrO2 nanoparticles. Chemical Science, 2015, 6(8): 5016–5026
CrossRef Pubmed Google scholar
[22]
Brahmachari S, Ghosh M, Dutta S, . Biotinylated amphiphile-single walled carbon nanotube conjugate for target-specific delivery to cancer cells. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2014, 2(9): 1160–1173
CrossRef Pubmed Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(1403 KB)

Accesses

Citations

Detail

Sections
Recommended

/