A facile solution approach for fabrication of small-sized MoSe2 with few layers as an efficient hydrogen evolution electrocatalyst

Weizhi WANG , Wei LI , Xinxin WANG , Junyao WU , Xuewei GU , Mengjuan QI , Enhong SHENG , Konglin WU

Front. Mater. Sci. ›› 2021, Vol. 15 ›› Issue (3) : 448 -455.

PDF (928KB)
Front. Mater. Sci. ›› 2021, Vol. 15 ›› Issue (3) : 448 -455. DOI: 10.1007/s11706-021-0557-5
LETTER
LETTER

A facile solution approach for fabrication of small-sized MoSe2 with few layers as an efficient hydrogen evolution electrocatalyst

Author information +
History +
PDF (928KB)

Graphical abstract

Cite this article

Download citation ▾
Weizhi WANG, Wei LI, Xinxin WANG, Junyao WU, Xuewei GU, Mengjuan QI, Enhong SHENG, Konglin WU. A facile solution approach for fabrication of small-sized MoSe2 with few layers as an efficient hydrogen evolution electrocatalyst. Front. Mater. Sci., 2021, 15(3): 448-455 DOI:10.1007/s11706-021-0557-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Turner J A. Sustainable hydrogen production. Science, 2004, 305(5686): 972–974

[2]

Pan Y, Zhang C, Lin Y, . Electrocatalyst engineering and structure–activity relationship in hydrogen evolution reaction: From nanostructures to single atoms. Science China Materials, 2020, 63(6): 921–948

[3]

Raj I, Duan Y L, Kigen D, . Catalytically enhanced thin and uniform TaS2 nanosheets for hydrogen evolution reaction. Frontiers of Materials Science, 2018, 12(3): 239–246

[4]

Wang W Z, Xu Y F, Liu Q, . One-dimensional hierarchical structured MoS2 with an ordered stacking of nanosheets: A facile template-free hydrothermal synthesis strategy and application as an efficient hydrogen evolution electrocatalyst. CrystEngComm, 2017, 19(2): 218–223

[5]

Morales-Guio C G, Stern L A, Hu X. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chemical Society Reviews, 2014, 43(18): 6555–6569

[6]

Xu C, Peng S J, Tan C L, . Ultrathin S-doped MoSe2 nanosheets for efficient hydrogen evolution. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(16): 5597–5601

[7]

Wang H, Kong D, Johanes P, . MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano Letters, 2013, 13(7): 3426–3433

[8]

Tsai C, Chan K, Abild-Pedersen F, . Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: A density functional study. Physical Chemistry Chemical Physics, 2014, 16(26): 13156–13164

[9]

Yin Y, Zhang Y, Gao T, . Synergistic phase and disorder engineering in 1T-MoSe2 nanosheets for enhanced hydrogen-evolution reaction. Advanced Materials, 2017, 29(28): 1700311

[10]

Zhang J T, Chen Y L, Liu M, . 1T@2H-MoSe2 nanosheets directly arrayed on Ti plate: An efficient electrocatalytic electrode for hydrogen evolution reaction. Nano Research, 2018, 11(9): 4587–4598

[11]

Wang P P, Sun H, Ji Y, . Three-dimensional assembly of single-layered MoS2. Advanced Materials, 2014, 26(6): 964–969

[12]

Masurkar N, Thangavel N K, Arava L M R. CVD-grown MoSe2 nanoflowers with dual active sites for efficient electrochemical hydrogen evolution reaction. ACS Applied Materials & Interfaces, 2018, 10(33): 27771–27779

[13]

Chhowalla M, Shin H S, Eda G, . The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry, 2013, 5(4): 263–275

[14]

Yang Y, Wang S T, Zhang J C, . Nanosheet-assembled MoSe2 and S-doped MoSe2−x nanostructures for superior lithium storage properties and hydrogen evolution reactions. Inorganic Chemistry Frontiers, 2015, 2(10): 931–937

[15]

Tian X, Gao Q, Zhang H, . Uniform small-sized MoS2 from novel solution-based microwave-assisted method with exceptional reversible lithium storage properties. Nanoscale, 2018, 10(32): 15222–15228

[16]

Yang D, Frindt R F. Powder X-ray diffraction of turbostratically stacked layer systems. Journal of Materials Research, 1996, 11(7): 1733–1738

[17]

Fujimoto H. Theoretical X-ray scattering intensity of carbons with turbostratic stacking and AB stacking structures. Carbon, 2003, 41(8): 1585–1592

[18]

Ramesh T N, Jayashree R S, Kamath P V. Disorder in layered hydroxides: DIFFaX simulation of the X-ray powder diffraction patterns of nickel hydroxide. Clays and Clay Minerals, 2003, 51(5): 570–576

[19]

Li Z Q, Lu C J, Xia Z P, . X-ray diffraction patterns of graphite and turbostratic carbon. Carbon, 2007, 45(8): 1686–1695

[20]

Cheng L, Huang W, Gong Q, . Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction. Angewandte Chemie International Edition, 2014, 53(30): 7860–7863

[21]

Tang Y, Zhao Z, Wang Y, . Carbon-stabilized interlayer-expanded few-layer MoSe2 nanosheets for sodium ion batteries with enhanced rate capability and cycling performance. ACS Applied Materials & Interfaces, 2016, 8(47): 32324–32332

[22]

Liu H, Liu B H, Guo H, . N-doped C-encapsulated scale-like yolk–shell frame assembled by expanded planes few-layer MoSe2 for enhanced performance in sodium-ion batteries. Nano Energy, 2018, 51: 639–648

[23]

Grim S O, Matienzo L J. X-ray photoelectron-spectroscopy of inorganic and organometallic compounds of molybdenum. Inorganic Chemistry, 1975, 14(5): 1014–1018

[24]

Guo X, Cao G L, Ding F, . A bulky and flexible electrocatalyst for efficient hydrogen evolution based on the growth of MoS2 nanoparticles on carbon nanofiber foam. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(9): 5041–5046

[25]

Abdallah W A, Nelson A E. Characterization of MoSe2(0 0 0 1) and ion-sputtered MoSe2 by XPS. Journal of Materials Science, 2005, 40(9–10): 2679–2681

[26]

Zhang X, Qiao X F, Shi W, . Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chemical Society Reviews, 2015, 44(9): 2757–2785

[27]

Lu X, Utama M I B, Lin J, . Large-area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates. Nano Letters, 2014, 14(5): 2419–2425

[28]

Shaw J C, Zhou H L, Chen Y, . Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Research, 2014, 7(4): 511–517

[29]

Jiang Q Q, Lu Y F, Huang Z X, . Facile solvent-thermal synthesis of ultrathin MoSe2 nanosheets for hydrogen evolution and organic dyes adsorption. Applied Surface Science, 2017, 402: 277–285

[30]

Zhang C, Chen X, Peng Z W, . Phosphine-free synthesis and shape evolution of MoSe2 nanoflowers for electrocatalytic hydrogen evolution reactions. CrystEngComm, 2018, 20(18): 2491–2498

[31]

Tang H, Huang H, Wang X S, . Hydrothermal synthesis of 3D hierarchical flower-like MoSe2 microspheres and their adsorption performances for methyl orange. Applied Surface Science, 2016, 379: 296–303

[32]

Gao M R, Chan M K Y, Sun Y. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production. Nature Communications, 2015, 6(1): 7493

[33]

Khan U, O’Neill A, Lotya M, . High-concentration solvent exfoliation of graphene. Small, 2010, 6(7): 864–871

[34]

Dong L, Lin S, Yang L, . Spontaneous exfoliation and tailoring of MoS2 in mixed solvents. Chemical Communications, 2014, 50(100): 15936–15939

[35]

Tung V C, Allen M J, Yang Y, . High-throughput solution processing of large-scale graphene. Nature Nanotechnology, 2009, 4(1): 25–29

[36]

Midya A, Ghorai A, Mukherjee S, . Hydrothermal growth of few layer 2H-MoS2 for heterojunction photodetector and visible light induced photocatalytic applications. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(12): 4534–4543

[37]

Bockris J O M, Potter E C. The mechanism of the cathodic hydrogen evolution reaction. Journal of the Electrochemical Society, 1952, 99(4): 169–186

[38]

Li Y, Wang H, Xie L, . MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. Journal of the American Chemical Society, 2011, 133(19): 7296–7299

[39]

Vrubel H, Moehl T, Grätzel M, . Revealing and accelerating slow electron transport in amorphous molybdenum sulphide particles for hydrogen evolution reaction. Chemical Communications, 2013, 49(79): 8985–8987

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (928KB)

1325

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/