Simultaneous synthesis of bimetallic@3D graphene electrocatalyst for HER and OER
Nabi ULLAH, Meng XIE, Shahid HUSSAIN, Waleed YASEEN, Sayyar Ali SHAH, Bashir Adegbemiga YUSUF, Chidinma Judith OLUIGBO, Haroon Ur RASHEED, Yuanguo XU, Jimin XIE
Simultaneous synthesis of bimetallic@3D graphene electrocatalyst for HER and OER
[1] |
Qiu Z, Ma Y, Edström K,
CrossRef
Google scholar
|
[2] |
Mahale N K, Ingle S T. Electrocatalytic hydrogen evolution reaction on nano-nickel decorated graphene electrode. Energy, 2017, 119: 872–878
CrossRef
Google scholar
|
[3] |
Akyüz D, Keskin B, Şahintürk U,
CrossRef
Google scholar
|
[4] |
Cao P, Wang L, Xu Y,
CrossRef
Google scholar
|
[5] |
Yin Y, Li R, Li Z,
CrossRef
Google scholar
|
[6] |
Peng S, Li L, Han X,
Pubmed
|
[7] |
Cai Z X, Song X H, Wang Y R,
CrossRef
Google scholar
|
[8] |
Liu Y R, Hu W H, Li X,
CrossRef
Google scholar
|
[9] |
Li J, Yan M, Zhou X,
CrossRef
Google scholar
|
[10] |
Jia Y, Zhang L, Gao G,
CrossRef
Google scholar
|
[11] |
Jiang J, Zhang C, Ai L. Hierarchical iron nickel oxide architectures derived from metal-organic frameworks as efficient electrocatalysts for oxygen evolution reaction. Electrochimica Acta, 2016, 208: 17–24
CrossRef
Google scholar
|
[12] |
Jin H, Wang J, Su D,
CrossRef
Pubmed
Google scholar
|
[13] |
Wang L, Li Y, Yin X,
CrossRef
Google scholar
|
[14] |
Jiao L, Zhou Y X, Jiang H L. Metal-organic framework-based CoP/reduced graphene oxide: High-performance bifunctional electrocatalyst for overall water splitting. Chemical Science, 2016, 7(3): 1690–1695
CrossRef
Pubmed
Google scholar
|
[15] |
Rezaei B, Jahromi A R T, Ensafi A A. Facile synthesis of Co(OH)2 magnetic nanoflake deposited on reduced graphene oxide nanoflake as an efficient bi-functional electrocatalyst for oxygen evolution/reduction reactions in alkaline media. Journal of Electroanalytical Chemistry, 2017, 805: 11–17
CrossRef
Google scholar
|
[16] |
Phihusut D, Ocon J D, Jeong B,
CrossRef
Google scholar
|
[17] |
Yang J, Wang X, Li B,
CrossRef
Google scholar
|
[18] |
Wang J, Gao D, Wang G,
CrossRef
Google scholar
|
[19] |
Chen Z, Ha Y, Liu Y,
CrossRef
Pubmed
Google scholar
|
[20] |
Zhang Z, Liu S, Xiao F,
CrossRef
Google scholar
|
[21] |
Ai L, Tian T, Jiang J. Ultrathin graphene layers encapsulating nickel nanoparticles derived metal-organic frameworks for highly efficient electrocatalytic hydrogen and oxygen evolution reactions. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 4771–4777
CrossRef
Google scholar
|
[22] |
Li K, Zhang J, Wu R,
CrossRef
Google scholar
|
[23] |
Sidhureddy B, Thiruppathi A R, Chen A. Au nanoparticle incorporated Co(OH)2 hybrid thin film with high electrocatalytic activity and stability for overall water splitting. Journal of Electroanalytical Chemistry, 2017, 794: 28–35
CrossRef
Google scholar
|
[24] |
Wang S, Qin J, Meng T,
CrossRef
Google scholar
|
[25] |
Yan X, Tian L, Atkins S,
CrossRef
Google scholar
|
[26] |
Chen S, Duan J, Tang Y,
CrossRef
Google scholar
|
[27] |
Nikam R D, Lu A Y, Sonawane P A,
CrossRef
Pubmed
Google scholar
|
[28] |
Huang Y, Gong Q, Song X,
CrossRef
Pubmed
Google scholar
|
[29] |
Konkena B, Masa J, Xia W,
CrossRef
Google scholar
|
[30] |
Wang J, Cui W, Liu Q,
CrossRef
Pubmed
Google scholar
|
[31] |
Shervedani R K, Torabi M, Yaghoobi F. Binder-free prickly nickel nanostructured/reduced graphene oxide composite: A highly efficient electrocatalyst for hydrogen evolution reaction in alkaline solutions. Electrochimica Acta, 2017, 244: 230–238
CrossRef
Google scholar
|
[32] |
Xu G, Xu G C, Ban J J,
CrossRef
Pubmed
Google scholar
|
[33] |
Li X, Lei H, Guo X,
CrossRef
Pubmed
Google scholar
|
[34] |
Liu X, Liu W, Ko M,
CrossRef
Google scholar
|
[35] |
Choi S H, Ko Y N, Lee J K,
CrossRef
Google scholar
|
[36] |
Ojani R, Valiollahi R, Raoof J B. Comparison between graphene supported Pt hollow nanospheres and graphene supported Pt solid nanoparticles for hydrogen evolution reaction. Energy, 2014, 74: 871–876
CrossRef
Google scholar
|
[37] |
Gu L, Zhu H, Yu D N,
CrossRef
Google scholar
|
[38] |
Su Y H, Huang S H, Kung P Y,
CrossRef
Google scholar
|
[39] |
Hu C, Mou Z, Lu G,
CrossRef
Pubmed
Google scholar
|
[40] |
Ye J, Yu Z, Chen W,
CrossRef
Google scholar
|
[41] |
Huang Y G, Fan H L, Chen Z K,
CrossRef
Google scholar
|
[42] |
Jiang M, Zhu D, Cai J,
CrossRef
Google scholar
|
[43] |
Zhang M, Sun Z, Zhang T,
CrossRef
Google scholar
|
[44] |
Wang H, Casalongue H S, Liang Y,
CrossRef
Pubmed
Google scholar
|
[45] |
Zhang H, Gu C D, Huang M L,
CrossRef
Google scholar
|
[46] |
Shi L, Li Y, Rong X,
CrossRef
Pubmed
Google scholar
|
[47] |
Chen Z, Wang L, Ma Z,
CrossRef
Google scholar
|
[48] |
Zhou Q, Zhong Y H, Chen X,
CrossRef
Google scholar
|
[49] |
Huang J, Wang J, Wang C,
CrossRef
Google scholar
|
[50] |
Worsley M A, Kucheyev S O, Mason H E,
CrossRef
Pubmed
Google scholar
|
[51] |
Ghasemi S, Hosseini S R, Nabipour S,
CrossRef
Google scholar
|
[52] |
Chi C, Xu H, Zhang K,
CrossRef
Google scholar
|
[53] |
Yu Z, Ye J, Chen W,
CrossRef
Google scholar
|
[54] |
Wang P, Jiang T, Zhu C,
CrossRef
Google scholar
|
[55] |
Gu H, Huang Y, Zuo L,
CrossRef
Google scholar
|
[56] |
Yang Z, Chabi S, Xia Y,
CrossRef
Google scholar
|
[57] |
Cheng C K, Yeh T K, Tsai M C,
CrossRef
Google scholar
|
[58] |
Niu Z, Chen J, Hng H H,
CrossRef
Pubmed
Google scholar
|
[59] |
Wang M, Wang Y, Dou H,
CrossRef
Google scholar
|
[60] |
Shang L, Zhao F, Zeng B. 3D porous graphene–porous PdCu alloy nanoparticles-molecularly imprinted poly(para-aminobenzoic acid) composite for the electrocatalytic assay of melamine. ACS Applied Materials & Interfaces, 2014, 6(21): 18721–18727
CrossRef
Pubmed
Google scholar
|
[61] |
Fei H, Yang Y, Peng Z,
CrossRef
Pubmed
Google scholar
|
[62] |
Shahid M M, Pandikumar A, Golsheikh A M,
CrossRef
Google scholar
|
[63] |
Wang L, Li Y, Xia M,
CrossRef
Google scholar
|
[64] |
Xia W Y, Li N, Li Q Y,
CrossRef
Pubmed
Google scholar
|
[65] |
Ullah N, Xie M, Oluigbo C J,
CrossRef
Google scholar
|
[66] |
Li Y, Li Z, Shen P K. Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors. Advanced Materials, 2013, 25(17): 2474–2480
CrossRef
Pubmed
Google scholar
|
[67] |
Ullah N, Zhao W, Lu X,
CrossRef
Google scholar
|
[68] |
Xu Y, Ullah N, Chen L,
CrossRef
Google scholar
|
/
〈 | 〉 |