Three-dimensional flower-like SnS2-supported bimetallic zeolite imidazole compound with enhanced electrocatalytic activity for methanol oxidation
Jinxing WANG, Fang YU, Zhenzhen GUO, Lei YAN, Xianbao WANG
Three-dimensional flower-like SnS2-supported bimetallic zeolite imidazole compound with enhanced electrocatalytic activity for methanol oxidation
[1] |
Das A K, Layek R K, Kim N H,
CrossRef
Pubmed
Google scholar
|
[2] |
Wang Y, Leung D Y C, Xuan J,
CrossRef
Google scholar
|
[3] |
Kongkanand A, Mathias M F. The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. The Journal of Physical Chemistry Letters, 2016, 7(7): 1127–1137
CrossRef
Google scholar
|
[4] |
Debe M K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature, 2012, 486(7401): 43–51
CrossRef
Pubmed
Google scholar
|
[5] |
Kruusenberg I, Ratso S, Vikkisk M,
CrossRef
Google scholar
|
[6] |
Thomas S. Direct methanol fuel cells: Progress in cell performance and cathode research. Electrochimica Acta, 2002, 47(22–23): 3741–3748
CrossRef
Google scholar
|
[7] |
Huang H, Wang X. Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(18): 6266–6291
CrossRef
Google scholar
|
[8] |
Liu M, Zhang R, Chen W. Graphene-supported nanoelectrocatalysts for fuel cells: Synthesis, properties, and applications. Chemical Reviews, 2014, 114(10): 5117–5160
CrossRef
Pubmed
Google scholar
|
[9] |
Meng H, Zeng D, Xie F. Recent development of Pd-based electrocatalysts for proton exchange membrane fuel cells. Catalysts, 2015, 5(3): 1221–1274
CrossRef
Google scholar
|
[10] |
Tsang C H A, Hui K N, Hui K S,
CrossRef
Google scholar
|
[11] |
Bedolla-Valdez Z I, Verde-Gómez Y, Valenzuela-Muñiz A M,
CrossRef
Google scholar
|
[12] |
Xia Z, Zhang X, Sun H,
CrossRef
Google scholar
|
[13] |
Kakati N, Maiti J, Lee S H,
CrossRef
Pubmed
Google scholar
|
[14] |
Arulmani D V, Eastcott J I, Mavilla S G,
CrossRef
Google scholar
|
[15] |
Shih Z Y, Periasamy A P, Hsu P C,
CrossRef
Google scholar
|
[16] |
Polo A S, Santos M C, de Souza R F B,
CrossRef
Google scholar
|
[17] |
Gasteiger H A, Kocha S S, Sompalli B,
CrossRef
Google scholar
|
[18] |
Tian X L, Wang L, Deng P,
CrossRef
Google scholar
|
[19] |
Zhang H, Liu X, Wu Y,
CrossRef
Google scholar
|
[20] |
Cui X, Xiao P, Wang J,
CrossRef
Google scholar
|
[21] |
Liu P, Hu Y, Liu X,
CrossRef
Google scholar
|
[22] |
Liu J, Ma Q, Huang Z,
CrossRef
Pubmed
Google scholar
|
[23] |
Sun S, Li H, Xu Z J. Impact of surface area in evaluation of catalyst activity. JOULE, 2018, 2(6): 1024–1027
CrossRef
Google scholar
|
[24] |
He L, Liu Y, Liu J,
CrossRef
Google scholar
|
[25] |
Shang L, Bian T, Zhang B,
CrossRef
Google scholar
|
[26] |
Wang D, Xin H L, Yu Y,
CrossRef
Pubmed
Google scholar
|
[27] |
Chen Y, Yang J, Yang Y,
CrossRef
Google scholar
|
[28] |
Yu J, Li X Y, Miao J,
CrossRef
Pubmed
Google scholar
|
[29] |
Chen X, Wang H, Wan H,
CrossRef
Google scholar
|
[30] |
Pieta I S, Rathi A, Pieta P,
CrossRef
Google scholar
|
[31] |
Rezaee S, Shahrokhian S. Facile synthesis of petal-like NiCo/NiO–CoO/nanoporous carbon composite based on mixed-metallic MOFs and their application for electrocatalytic oxidation of methanol. Applied Catalysis B: Environmental, 2019, 244: 802–813
CrossRef
Google scholar
|
[32] |
Hu Y, Mei T, Li J,
CrossRef
Google scholar
|
[33] |
Guo Y, Tang J, Qian H,
CrossRef
Google scholar
|
[34] |
Liang Z, Qu C, Xia D,
CrossRef
Google scholar
|
[35] |
Weng B, Wang X, Grice C R,
CrossRef
Google scholar
|
[36] |
Yang X, Wang S, Yu D Y W,
CrossRef
Google scholar
|
[37] |
Mehek R, Iqbal N, Noor T,
CrossRef
Google scholar
|
[38] |
Bai Z, Li S, Fu J,
CrossRef
Google scholar
|
[39] |
Xie Y, Zhang C, He X,
CrossRef
Google scholar
|
[40] |
Liu T, Li P, Yao N,
CrossRef
Pubmed
Google scholar
|
[41] |
Yu F, Ming X, Xu Y,
CrossRef
Google scholar
|
[42] |
Lin L D, Zhao D, Li X X,
CrossRef
Pubmed
Google scholar
|
[43] |
Shinde S S, Sami A, Kim D H,
CrossRef
Pubmed
Google scholar
|
[44] |
Zhang Y C, Li J, Zhang M,
CrossRef
Google scholar
|
[45] |
Zhang A, He R, Li H,
CrossRef
Google scholar
|
[46] |
Guo Z, Yu F, Chen Z,
CrossRef
Google scholar
|
[47] |
Amin R S, El-Khatib K M, Siracusano S,
CrossRef
Google scholar
|
[48] |
Hu G, Nitze F, Barzegar H R,
CrossRef
Google scholar
|
[49] |
Ma Y, Chen X, Wu H,
CrossRef
Google scholar
|
[50] |
Xiao X, He C T, Zhao S,
CrossRef
Google scholar
|
[51] |
Liu Y K, Hu B, Wu S D,
CrossRef
Google scholar
|
[52] |
Wu D, Zhang W, Cheng D. Facile synthesis of Cu/NiCu electrocatalysts integrating alloy, core–shell, and one-dimensional structures for efficient methanol oxidation reaction. ACS Applied Materials & Interfaces, 2017, 9(23): 19843–19851
CrossRef
Pubmed
Google scholar
|
[53] |
Umeshbabu E, Rao G R. NiCo2O4 hexagonal nanoplates anchored on reduced graphene oxide sheets with enhanced electrocatalytic activity and stability for methanol and water oxidation. Electrochimica Acta, 2016, 213: 717–729
CrossRef
Google scholar
|
[54] |
Cui J, Liu J M, Wang C B,
CrossRef
Google scholar
|
[55] |
Gu L, Qian L, Lei Y,
CrossRef
Google scholar
|
[56] |
Candelaria S L, Bedford N M, Woehl T J,
CrossRef
Google scholar
|
[57] |
Jothi P R, Kannan S, Velayutham G. Enhanced methanol electro-oxidation over in-situ carbon and graphene supported one dimensional NiMoO4 nanorods. Journal of Power Sources, 2015, 277: 350–359 doi:10.1016/j.jpowsour.2014.11.137
|
/
〈 | 〉 |