Intelligent deformation of biomedical polyurethane
Maolan ZHANG, Huan WANG, Junjie MAO, Da SUN, Xiaoling LIAO
Intelligent deformation of biomedical polyurethane
[1] |
Akindoyo J O, Beg M D H, Ghazali S,
CrossRef
Google scholar
|
[2] |
Cheng X, Chen Y, Dai S,
CrossRef
Pubmed
Google scholar
|
[3] |
Deng Z, Guo Y, Zhao X,
CrossRef
Pubmed
Google scholar
|
[4] |
Li M, Chen J, Shi M,
CrossRef
Google scholar
|
[5] |
Yilgör I, Yilgör E, Wilkes G L. Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: A comprehensive review. Polymer, 2015, 58: A1–A36
CrossRef
Google scholar
|
[6] |
Boretos J W, Pierce W S. Segmented polyurethane: a new elastomer for biomedical applications. Science, 1967, 158(3807): 1481–1482
CrossRef
Pubmed
Google scholar
|
[7] |
Wang Y, Hao J, Huang Z,
CrossRef
Google scholar
|
[8] |
Ren H, Qiu X P, Shi Y,
CrossRef
Pubmed
Google scholar
|
[9] |
Ding Q, Xu X, Yue Y,
CrossRef
Pubmed
Google scholar
|
[10] |
Zhang Y, Li Y, Liu W. Dipole–dipole and H-bonding interactions significantly enhance the multifaceted mechanical properties of thermoresponsive shape memory hydrogels. Advanced Functional Materials, 2015, 25(3): 471–480
CrossRef
Google scholar
|
[11] |
Razzaq M Y, Anhalt M, Frormann L,
CrossRef
Google scholar
|
[12] |
Valentini L, Cardinali M, Kenny J. Hot press transferring of graphene nanoplatelets on polyurethane block copolymers film for electroactive shape memory devices. Journal of Polymer Science Part B: Polymer Physics, 2014, 52(16): 1100–1106
CrossRef
Google scholar
|
[13] |
Cho H J, Jeong S M, Lim T,
CrossRef
Google scholar
|
[14] |
Wang Y J, Jeng U S, Hsu S H. Biodegradable water-based polyurethane shape memory elastomers for bone tissue engineering. ACS Biomaterials Science & Engineering, 2018, 4(4): 1397–1406
CrossRef
Google scholar
|
[15] |
Garg H, Mohanty J, Gupta P, et al. Polyethylenimine-based shape memory polyurethane with low transition temperature and excellent memory performance. Macromolecular Materials and Engineering, 2020, 305(8): 2000215
|
[16] |
Saleeb A F, Natsheh S H, Owusu-Danquah J S. A multi-mechanism model for large-strain thermomechanical behavior of polyurethane shape memory polymer. Polymer, 2017, 130: 230–241
CrossRef
Google scholar
|
[17] |
Hu J L, Chen S J. A review of actively moving polymers in textile applications. Journal of Materials Chemistry, 2010, 20(17): 3346
CrossRef
Google scholar
|
[18] |
Hu J L, Zhu Y, Huang H H,
CrossRef
Google scholar
|
[19] |
Chai Q Y, Huang Y S, Ayres N. Shape memory biomaterials prepared from polyurethane/ureas containing sulfated glucose. Journal of Polymer Science Part A: Polymer Chemistry, 2015, 53(19): 2252–2257
CrossRef
Google scholar
|
[20] |
Nagahama K, Ueda Y, Ouchi T,
CrossRef
Pubmed
Google scholar
|
[21] |
Wang Y J, Jeng U S, Hsu S H. Biodegradable water-based polyurethane shape memory elastomers for bone tissue engineering. ACS Biomaterials Science & Engineering, 2018, 4(4): 1397–1406
CrossRef
Google scholar
|
[22] |
Ji F L, Hu J L, Yu W M W,
CrossRef
Google scholar
|
[23] |
Sang J G, Lu K W, Wang J H,
|
[24] |
Maitland D J, Metzger M F, Schumann D,
CrossRef
Pubmed
Google scholar
|
[25] |
Zhang H, Wang H, Zhong W,
CrossRef
Google scholar
|
[26] |
Bai Y, Jiang C, Wang Q,
CrossRef
Pubmed
Google scholar
|
[27] |
Ergene E, Yagci B S, Gokyer S,
CrossRef
Pubmed
Google scholar
|
[28] |
Wierzbicki M A, Bryant J, Miller M W,
CrossRef
Pubmed
Google scholar
|
[29] |
Sun J, Rust T, Kuckling D. Light-responsive serinol-based polyurethane nanocarrier for controlled drug release. Macromolecular Rapid Communications, 2019, 40(22): 1900348
CrossRef
Pubmed
Google scholar
|
[30] |
Burnworth M, Tang L, Kumpfer J R,
CrossRef
Pubmed
Google scholar
|
[31] |
Cheng Z, Wang T, Li X,
CrossRef
Pubmed
Google scholar
|
[32] |
Wu Y, Lin Y, Zhou Y,
|
[33] |
Maitland D J, Small W IV, Ortega J M,
CrossRef
Pubmed
Google scholar
|
[34] |
Zhang Y L, Zhou S W, Chong K C,
CrossRef
Google scholar
|
[35] |
Xie H, Shao J, Ma Y,
CrossRef
Pubmed
Google scholar
|
[36] |
Shi Y, Chen Z. Function-driven design of stimuli-responsive polymer composites: recent progress and challenges. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2018, 6(44): 11817–11834
CrossRef
Google scholar
|
[37] |
Luculescu C R, Acasandrei A M, Mustaciosu C C,
CrossRef
Google scholar
|
[38] |
Yan H H, Li L L, Shi X C,
CrossRef
Google scholar
|
[39] |
Xiao Z, Sheng C J, Xia Y,
CrossRef
Google scholar
|
[40] |
Wang X Z, Sun H L, Yue X Y,
CrossRef
Google scholar
|
[41] |
Lin C H, Sheng D K, Liu X D,
CrossRef
Google scholar
|
[42] |
Cho J W, Kim J W, Jung Y C,
CrossRef
Google scholar
|
[43] |
Kang S, Kang T H, Kim B S,
CrossRef
Google scholar
|
[44] |
Guo J M, Wang Z Q, Tong L Y,
CrossRef
Google scholar
|
[45] |
Kumar U N, Kratz K, Heuchel M,
CrossRef
Pubmed
Google scholar
|
[46] |
Testa P, Style R W, Cui J,
CrossRef
Pubmed
Google scholar
|
[47] |
Salahuddin N, Rehab A, Abd-Elghany S. In vitro thermo-triggered drug release from magnetic polyurethane-urea nanocomposite. Journal of Drug Delivery Science and Technology, 2020, 56: 101564
CrossRef
Google scholar
|
[48] |
Marycz K, Alicka M, Kornicka-Garbowska K,
CrossRef
Pubmed
Google scholar
|
[49] |
Yang B, Huang W M, Li C,
CrossRef
Google scholar
|
[50] |
Huang W M, Yang B, An L,
CrossRef
Google scholar
|
[51] |
Jafari S, Nourany M, Zakizadeh M,
CrossRef
Google scholar
|
[52] |
Han Y T, Hu J L, Chen X Y. A skin inspired bio-smart composite with water responsive shape memory ability. Materials Chemistry Frontiers, 2019, 3(6): 1128–1138
CrossRef
Google scholar
|
[53] |
Wang Y, Cheng Z, Liu Z,
CrossRef
Pubmed
Google scholar
|
[54] |
Wu G, Gu Y, Hou X,
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |