A review on structures, materials and applications of stretchable electrodes
Yumeng WANG, Xingsheng LI, Yue HOU, Chengri YIN, Zhenxing YIN
A review on structures, materials and applications of stretchable electrodes
With the rapid development of wearable smart devices, many researchers have carried out in-depth research on the stretchable electrodes. As one of the core components for electronics, the electrode mainly transfers the electrons, which plays an important role in driving the various electrical devices. The key to the research for the stretchable electrode is to maintain the excellent electrical properties or exhibit the regular conductive change when subjected to large tensile deformation. This article outlines the recent progress of stretchable electrodes and gives a comprehensive introduction to the structures, materials, and applications, including supercapacitors, lithium-ion batteries, organic light-emitting diodes, smart sensors, and heaters. The performance comparison of various stretchable electrodes was proposed to clearly show the development challenges in this field. We hope that it can provide a meaningful reference for realizing more sensitive, smart, and low-cost wearable electrical devices in the near future.
wearable smart electronics / stretchable electrodes / electrode structures / elastic substrates / conductive materials
[1] |
Park J J, Hyun W J, Mun S C,
CrossRef
Pubmed
Google scholar
|
[2] |
Ryu S, Lee P, Chou J B,
CrossRef
Pubmed
Google scholar
|
[3] |
He X, Liu Q, Wang J,
CrossRef
Google scholar
|
[4] |
Yu L, Yeo J C, Soon R H,
CrossRef
Pubmed
Google scholar
|
[5] |
Ju G, Khan M A, Zheng H,
CrossRef
Google scholar
|
[6] |
Cai B, Shao C, Qu L,
CrossRef
Google scholar
|
[7] |
Lv Z, Luo Y, Tang Y,
CrossRef
Pubmed
Google scholar
|
[8] |
Singh V, Sheng Y, Tsao H. Self-healing atypical liquid-infused surfaces: superhydrophobicity and superoleophobicity in submerged conditions. Journal of the Taiwan Institute of Chemical Engineers, 2019, 97: 96–104
CrossRef
Google scholar
|
[9] |
Trung T Q, Kim C, Lee H B,
CrossRef
Google scholar
|
[10] |
An B W, Gwak E J, Kim K,
CrossRef
Pubmed
Google scholar
|
[11] |
Song J, Li J, Xu J,
CrossRef
Pubmed
Google scholar
|
[12] |
Liang J, Li L, Niu X,
CrossRef
Google scholar
|
[13] |
Yin D, Feng J, Jiang N R,
CrossRef
Pubmed
Google scholar
|
[14] |
Bae S K, Choo D C, Kang H S,
CrossRef
Google scholar
|
[15] |
Lee J, Lee P, Lee H B,
CrossRef
Google scholar
|
[16] |
Wang Z, Huang Y, Sun J,
CrossRef
Pubmed
Google scholar
|
[17] |
Ren M, Zhou Y, Wang Y,
CrossRef
Google scholar
|
[18] |
Chen X, Xiong J, Parida K,
CrossRef
Google scholar
|
[19] |
Lee Y, Chae S, Park H,
CrossRef
Google scholar
|
[20] |
Lee J H, Kim J, Liu D,
CrossRef
Google scholar
|
[21] |
An S, Jo H S, Kim D Y,
CrossRef
Pubmed
Google scholar
|
[22] |
Sun J, Huang Y, Fu C,
CrossRef
Google scholar
|
[23] |
Seyedin S, Uzun S, Levitt A,
CrossRef
Google scholar
|
[24] |
Mun T J, Kim S H, Park J W,
CrossRef
Google scholar
|
[25] |
Jin H, Nayeem M O G, Lee S,
CrossRef
Pubmed
Google scholar
|
[26] |
Jost K, Stenger D, Perez C R,
CrossRef
Google scholar
|
[27] |
Yin Z, Song S K, Cho S,
CrossRef
Google scholar
|
[28] |
Yin Z, Song S K, You D J,
CrossRef
Pubmed
Google scholar
|
[29] |
Araki T, Jiu J, Nogi M,
CrossRef
Google scholar
|
[30] |
Lee P, Lee J, Lee H,
CrossRef
Pubmed
Google scholar
|
[31] |
Lee H, Choi T K, Lee Y B,
CrossRef
Pubmed
Google scholar
|
[32] |
Xu S, Zhang Y, Cho J,
CrossRef
Pubmed
Google scholar
|
[33] |
Gao Y, Guo F, Cao P,
CrossRef
Pubmed
Google scholar
|
[34] |
Yang Z, Zhai Z, Song Z,
CrossRef
Pubmed
Google scholar
|
[35] |
Lipomi D J, Tee B C K, Vosgueritchian M,
CrossRef
Pubmed
Google scholar
|
[36] |
Yang P K, Lin L, Yi F,
CrossRef
Pubmed
Google scholar
|
[37] |
Jiang Z, Nayeem M O G, Fukuda K,
CrossRef
Pubmed
Google scholar
|
[38] |
Sun F, Tian M, Sun X,
CrossRef
Pubmed
Google scholar
|
[39] |
Yoon S, Kim H K. Cost-effective stretchable Ag nanoparticles electrodes fabrication by screen printing for wearable strain sensors. Surface and Coatings Technology, 2020, 384: 125308
CrossRef
Google scholar
|
[40] |
Wu S, Zhang J, Ladani R B,
CrossRef
Pubmed
Google scholar
|
[41] |
Amjadi M, Pichitpajongkit A, Lee S,
CrossRef
Pubmed
Google scholar
|
[42] |
Zhang R, Ying C, Gao H,
CrossRef
Google scholar
|
[43] |
Hong S, Lee J, Do K,
CrossRef
Google scholar
|
[44] |
Liu Z, Qi D, Hu G,
CrossRef
Pubmed
Google scholar
|
[45] |
Yu J, Lu W, Pei S,
CrossRef
Pubmed
Google scholar
|
[46] |
Mu C, Song Y, Huang W,
CrossRef
Google scholar
|
[47] |
Xu P, Kang J, Choi J B,
CrossRef
Pubmed
Google scholar
|
[48] |
Song X, Yang J, Ran Q,
CrossRef
Google scholar
|
[49] |
Kim D, Yoon Y, Kauh S K,
CrossRef
Google scholar
|
[50] |
Yin D, Feng J, Ma R,
CrossRef
Pubmed
Google scholar
|
[51] |
Lee J G, Lee J H, An S,
CrossRef
Google scholar
|
[52] |
Lee Y, Le V T, Kim J G,
CrossRef
Google scholar
|
[53] |
Cao C, Zhou Y, Ubnoske S,
CrossRef
Google scholar
|
[54] |
Tang Q, Chen M, Wang G,
CrossRef
Google scholar
|
[55] |
Zhang B, Li W, Nogi M,
CrossRef
Pubmed
Google scholar
|
[56] |
Hong S Y, Lee Y H, Park H,
CrossRef
Pubmed
Google scholar
|
[57] |
Weng W, Sun Q, Zhang Y,
CrossRef
Pubmed
Google scholar
|
[58] |
Zhang Y, Bai W, Ren J,
CrossRef
Google scholar
|
[59] |
Gilshteyn E P, Romanov S A, Kopylova D S,
CrossRef
Pubmed
Google scholar
|
[60] |
Li X, Li H, Fan X,
CrossRef
Google scholar
|
[61] |
Sun P, Qiu M, Li M,
CrossRef
Google scholar
|
[62] |
Zhang Y, Bai W, Cheng X,
CrossRef
Pubmed
Google scholar
|
[63] |
Li F, Chen J, Wang X,
CrossRef
Google scholar
|
[64] |
Chen T, Xue Y, Roy A K,
CrossRef
Pubmed
Google scholar
|
[65] |
Nam I, Bae S, Park S,
CrossRef
Google scholar
|
[66] |
Hong J Y, Kim W, Choi D,
CrossRef
Pubmed
Google scholar
|
[67] |
Yu Z, Niu X, Liu Z,
CrossRef
Pubmed
Google scholar
|
[68] |
Wang L, Chen Y, Lin L,
CrossRef
Google scholar
|
[69] |
Yang Y, Sun N, Wen Z,
CrossRef
Pubmed
Google scholar
|
[70] |
Yi X, Yu Z, Niu X,
CrossRef
Google scholar
|
[71] |
Hwang B Y, Choi S H, Lee K W,
CrossRef
Google scholar
|
[72] |
Lee J H, Jeong Y R, Lee G,
CrossRef
Pubmed
Google scholar
|
[73] |
Teo M Y, Kim N, Kee S,
CrossRef
Pubmed
Google scholar
|
[74] |
Granero A J, Wagner P, Wagner K,
CrossRef
Google scholar
|
[75] |
Yan C, Wang X, Cui M,
CrossRef
Google scholar
|
[76] |
Song J H, Kim Y T, Cho S,
CrossRef
Pubmed
Google scholar
|
[77] |
Ye G, Song Z, Yu T,
CrossRef
Pubmed
Google scholar
|
[78] |
Matsunaga M, Hirotani J, Kishimoto S,
CrossRef
Google scholar
|
[79] |
Choi W M, Song J, Khang D Y,
CrossRef
Pubmed
Google scholar
|
[80] |
Qi D, Liu Z, Liu Y,
CrossRef
Pubmed
Google scholar
|
[81] |
Cheng T, Zhang Y Z, Lai W Y,
CrossRef
Google scholar
|
[82] |
Xu F, Zhu Y. Highly conductive and stretchable silver nanowire conductors. Advanced Materials, 2012, 24(37): 5117–5122
CrossRef
Pubmed
Google scholar
|
[83] |
Shen G, Chen B, Liang T,
CrossRef
Google scholar
|
[84] |
Zhang Z, Deng J, Li X,
CrossRef
Pubmed
Google scholar
|
[85] |
Su Y, Ping X, Yu K J,
CrossRef
Pubmed
Google scholar
|
[86] |
Lv J, Jeerapan I, Tehrani F,
CrossRef
Google scholar
|
[87] |
Li M, Zu M, Yu J,
CrossRef
Pubmed
Google scholar
|
[88] |
Liu Z, Qi D, Guo P,
CrossRef
Pubmed
Google scholar
|
[89] |
Balandin A A, Ghosh S, Bao W,
CrossRef
Pubmed
Google scholar
|
[90] |
Zang J, Ryu S, Pugno N,
CrossRef
Pubmed
Google scholar
|
[91] |
Pan F, Chen S M, Li Y,
CrossRef
Google scholar
|
[92] |
Yun J, Lee H, Song C,
CrossRef
Google scholar
|
[93] |
Yin Z, Cho S, You D J,
CrossRef
Google scholar
|
[94] |
Li X, Wang Y, Yin C,
CrossRef
Google scholar
|
[95] |
Tang Y, Gong S, Chen Y,
CrossRef
Pubmed
Google scholar
|
[96] |
Shi Y, Peng L, Ding Y,
CrossRef
Pubmed
Google scholar
|
[97] |
Vosgueritchian M, Lipomi D J, Bao Z. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Advanced Functional Materials, 2012, 22(2): 421–428
CrossRef
Google scholar
|
[98] |
Wang C, Zheng W, Yue Z,
CrossRef
Pubmed
Google scholar
|
[99] |
Markvicka E J, Bartlett M D, Huang X,
CrossRef
Pubmed
Google scholar
|
[100] |
Wang H, Yao Y, He Z,
CrossRef
Pubmed
Google scholar
|
[101] |
Hong S, Lee H, Lee J,
CrossRef
Pubmed
Google scholar
|
[102] |
Ahmed M F, Li Y, Zeng C. Stretchable and compressible piezoresistive sensors from auxetic foam and silver nanowire. Materials Chemistry and Physics, 2019, 229: 167–173
CrossRef
Google scholar
|
[103] |
Huang K, Chen M, He G,
CrossRef
Google scholar
|
[104] |
Yu Y, Zeng J, Chen C,
CrossRef
Pubmed
Google scholar
|
[105] |
Jiang D H, Liao Y C, Cho C J,
CrossRef
Pubmed
Google scholar
|
[106] |
Wang Y, Wang Y, Yang Y. Graphene–polymer nanocomposite-based redox-induced electricity for flexible self-powered strain sensors. Advanced Energy Materials, 2018, 8(22): 1800961
CrossRef
Google scholar
|
[107] |
El-Atab N, Qaiser N, Bahabry R,
CrossRef
Google scholar
|
[108] |
Kubo M, Li X, Kim C,
CrossRef
Pubmed
Google scholar
|
[109] |
Amjadi M, Yoon Y J, Park I. Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes–Ecoflex nanocomposites. Nanotechnology, 2015, 26(37): 375501
CrossRef
Pubmed
Google scholar
|
[110] |
Kim S H, Jung S, Yoon I S,
CrossRef
Pubmed
Google scholar
|
[111] |
He S, Cao J, Xie S,
CrossRef
Google scholar
|
[112] |
Moon I K, Ki B, Oh J. Three-dimensional porous stretchable supercapacitor with wavy structured PEDOT:PSS/graphene electrode. Chemical Engineering Journal, 2020, 392: 123794
CrossRef
Google scholar
|
[113] |
Wang X, Yang C, Jin J,
CrossRef
Google scholar
|
[114] |
Wen J, Li S, Zhou K,
CrossRef
Google scholar
|
[115] |
Zhang L, Zhu P, Zhou F,
CrossRef
Pubmed
Google scholar
|
[116] |
He W, Wang C, Li H,
CrossRef
Google scholar
|
[117] |
Chen C, Cao J, Wang X,
CrossRef
Google scholar
|
[118] |
Chen X, Villa N S, Zhuang Y,
CrossRef
Google scholar
|
[119] |
Park J, Ahn D B, Kim J,
CrossRef
Pubmed
Google scholar
|
[120] |
Yang J, Hong T, Deng J,
CrossRef
Pubmed
Google scholar
|
[121] |
Yu J, Zhou J, Yao P,
CrossRef
Google scholar
|
[122] |
Xu T, Yang D, Fan Z,
CrossRef
Google scholar
|
[123] |
Niu Z, Dong H, Zhu B,
CrossRef
Pubmed
Google scholar
|
[124] |
Chen X, Huang H, Pan L,
CrossRef
Pubmed
Google scholar
|
[125] |
Wang L, Choi W, Yoo K S,
CrossRef
Google scholar
|
[126] |
Zhang L, Qin X, Zhao S,
CrossRef
Pubmed
Google scholar
|
[127] |
Chen D, Lou Z, Jiang K,
CrossRef
Google scholar
|
[128] |
Shi C, Wang T, Liao X,
CrossRef
Google scholar
|
[129] |
Yu Y, Luo Y, Wu H,
CrossRef
Pubmed
Google scholar
|
[130] |
Kano S, Kim K, Fujii M. Fast-response and flexible nanocrystal-based humidity sensor for monitoring human respiration and water evaporation on skin. ACS Sensors, 2017, 2(6): 828–833
CrossRef
Pubmed
Google scholar
|
[131] |
Ouyang H, Tian J, Sun G,
CrossRef
Pubmed
Google scholar
|
[132] |
Pang C, Koo J H, Nguyen A,
CrossRef
Pubmed
Google scholar
|
[133] |
Choi T Y, Hwang B U, Kim B Y,
CrossRef
Pubmed
Google scholar
|
[134] |
Oh S Y, Hong S Y, Jeong Y R,
CrossRef
Pubmed
Google scholar
|
[135] |
Yan H, Zhong M, Lv Z,
CrossRef
Pubmed
Google scholar
|
[136] |
Trung T Q, Dang T M L, Ramasundaram S,
CrossRef
Pubmed
Google scholar
|
[137] |
Jang N S, Kim K H, Ha S H,
CrossRef
Pubmed
Google scholar
|
[138] |
Wang Y, Yu Z, Mao G,
CrossRef
Google scholar
|
[139] |
Souri H, Bhattacharyya D. Highly stretchable multifunctional wearable devices based on conductive cotton and wool fabrics. ACS Applied Materials & Interfaces, 2018, 10(24): 20845–20853
CrossRef
Pubmed
Google scholar
|
[140] |
Jang J, Hyun B G, Ji S,
CrossRef
Google scholar
|
[141] |
Zhang M, Wang C, Liang X,
CrossRef
Google scholar
|
[142] |
Sun W J, Xu L, Jia L C,
CrossRef
Google scholar
|
[143] |
Kim H, Seo M, Kim J W,
CrossRef
Google scholar
|
/
〈 | 〉 |