Biomineralized and chemically synthesized magnetic nanoparticles: A contrast
Tanya NANDA, Ankita RATHORE, Deepika SHARMA
Biomineralized and chemically synthesized magnetic nanoparticles: A contrast
Magnetic nanoparticles (MNPs) have widely been synthesized through chemical processes for biomedical applications over the past few decades. Recently, a new class of MNPs, known as bacterial magnetosomes, has been isolated from magnetotactic bacteria, a natural source. These magnetosomes are magnetite or greigite nanocrystals which are biomineralized in the bacterial cell and provide magnet-like properties to it. Contrary to MNPs, bacterial magnetosomes are biocompatible, lower in toxicity, and can be easily cleared from the body due to the presence of a phospholipid bilayer around them. They also do not demonstrate aggregation, which makes them highly advantageous. In this review, we have provided an in-depth comparative account of bacterial magnetosomes and chemically synthesized MNPs in terms of their synthesis, properties, and biomedical applications. In addition, we have also provided a contrast on how magnetosomes might have the potential to successfully substitute synthetic MNPs in therapeutic and imaging applications.
bacterial magnetosomes / magnetic nanoparticles / iron nanoparticles / magnetotactic bacteria / magnetosomes
[1] |
Pankhurst Q, Jones S, Dobson J. Applications of magnetic nanoparticles in biomedicine: The story so far. Journal of Physics D: Applied Physics, 2016, 49(50): 501002
CrossRef
Google scholar
|
[2] |
Han L, Li S, Yang Y,
CrossRef
Google scholar
|
[3] |
Yan L, Zhang S, Chen P,
CrossRef
Pubmed
Google scholar
|
[4] |
Alphandéry E. Applications of magnetosomes synthesized by magnetotactic bacteria in medicine. Frontiers in Bioengineering and Biotechnology, 2014, 2: 5
CrossRef
Pubmed
Google scholar
|
[5] |
Jacob J J, Suthindhiran K. Magnetotactic bacteria and magnetosomes — Scope and challenges. Materials Science & Engineering C: Materials for Biological Applications, 2016, 68: 919–928
CrossRef
Pubmed
Google scholar
|
[6] |
Xie J, Chen K, Chen X Y. Production, modification and bio-applications of magnetic nanoparticles gestated by magnetotactic bacteria. Nano Research, 2009, 2(4): 261–278
CrossRef
Pubmed
Google scholar
|
[7] |
Kahani S A, Yagini Z. A comparison between chemical synthesis magnetite nanoparticles and biosynthesis magnetite. Bioinorganic Chemistry and Applications, 2014, 2014: 384984
CrossRef
Pubmed
Google scholar
|
[8] |
Kalirai S S, Bazylinski D A, Hitchcock A P. Anomalous magnetic orientations of magnetosome chains in a magnetotactic bacterium: Magnetovibrio blakemorei strain MV-1. PLoS One, 2013, 8(1): e53368
CrossRef
Pubmed
Google scholar
|
[9] |
Wang L, Sun Y, Li Z,
CrossRef
Pubmed
Google scholar
|
[10] |
Priyadarshana G, Kottegoda N, Senaratne A,
CrossRef
Google scholar
|
[11] |
Huang J, Li Y, Orza A,
CrossRef
Pubmed
Google scholar
|
[12] |
Dutz S, Hergt R, Mürbe J,
CrossRef
Google scholar
|
[13] |
Lu A H, Salabas E L, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition, 2007, 46(8): 1222–1244
CrossRef
Pubmed
Google scholar
|
[14] |
Woo K, Hong J, Choi S,
CrossRef
Google scholar
|
[15] |
Faraji M, Yamini Y, Rezaee M. Magnetic nanoparticles: Synthesis, stabilization, functionalization, characterization, and applications. Journal of the Iranian Chemical Society, 2010, 7(1): 1–37
CrossRef
Google scholar
|
[16] |
Tartaj P, Veintemillas-Verdaguer S, Gonzalez-Carreño T,
|
[17] |
Nejati-Koshki K, Mesgari M, Ebrahimi E,
CrossRef
Pubmed
Google scholar
|
[18] |
Butter K, Kassapidou K, Vroege G J,
CrossRef
Pubmed
Google scholar
|
[19] |
Mason T J, Lorimer J P. Applied Sonochemistry: The Uses of Power Ultrasound in Chemistry and Processing. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2002
|
[20] |
Schüler D, Frankel R B. Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications. Applied Microbiology and Biotechnology, 1999, 52(4): 464–473
CrossRef
Pubmed
Google scholar
|
[21] |
Sun J B, Zhao F, Tang T,
CrossRef
Pubmed
Google scholar
|
[22] |
Moisescu C, Bonneville S, Staniland S,
CrossRef
Google scholar
|
[23] |
Komeili A. Molecular mechanisms of magnetosome formation. Annual Review of Biochemistry, 2007, 76(1): 351–366
CrossRef
Pubmed
Google scholar
|
[24] |
Lowenstam H A. Minerals formed by organisms. Science, 1981, 211(4487): 1126–1131
CrossRef
Pubmed
Google scholar
|
[25] |
Penninga I, de Waard H, Moskowitz B M,
CrossRef
Google scholar
|
[26] |
Arakaki A, Nakazawa H, Nemoto M,
CrossRef
Pubmed
Google scholar
|
[27] |
Dehsari H S, Ribeiro A H, Ersöez B,
CrossRef
Google scholar
|
[28] |
Sugimoto T, ed. Fine Particles: Synthesis, Characterization, and Mechanism of Growth. New York, USA: Marcel Dekker, Inc., 2000
|
[29] |
Wegner G. Biomineralization: Progress in biology, molecular biology and application, 2nd revised ed. Edited by E. Bäuerlein. ChemBioChem, 2005, 6(4): 762–763
CrossRef
Google scholar
|
[30] |
Mamiya H. Recent advances in understanding magnetic nanoparticles in AC magnetic fields and optimal design for targeted hyperthermia. Journal of Nanomaterials, 2013, 2013: 752973
CrossRef
Google scholar
|
[31] |
Nidhin M, Indumathy R, Sreeram K J,
CrossRef
Google scholar
|
[32] |
Atta-ur-Rahman F R S, Choudhary M I, eds. Frontiers in Anti-Cancer Drug Discovery. UAE: Bentham Science Publisher, 2013
|
[33] |
Qi L, Lv X, Zhang T,
CrossRef
Pubmed
Google scholar
|
[34] |
Bini R A, Marques R F, Santos F J,
CrossRef
Google scholar
|
[35] |
Justin C, Philip S A, Samrot A V. Synthesis and characterization of superparamagnetic iron-oxide nanoparticles (SPIONs) and utilization of SPIONs in X-ray imaging. Applied Nanoscience, 2017, 7(7): 463–475
CrossRef
Google scholar
|
[36] |
Bazylinski D A, Schübbe S. Controlled biomineralization by and application of magnetotactic bacteria. In: Laskin A I, Sariaslani S, Gadd G M, eds. Advances in Applied Microbiology (Volume 62). San Diego, CA, USA: Elsevier Inc., 2007, 21‒62
|
[37] |
Zhou J, Gan N, Li T,
CrossRef
Pubmed
Google scholar
|
[38] |
Sun J, Li Y, Liang X J,
CrossRef
Pubmed
Google scholar
|
[39] |
Dunin-Borkowski R E, McCartney M R, Frankel R B,
CrossRef
Pubmed
Google scholar
|
[40] |
Kiani B, Faivre D, Klumpp S. Elastic properties of magnetosome chains. New Journal of Physics, 2015, 17(4): 043007
CrossRef
Google scholar
|
[41] |
Lins U, McCartney M R, Farina M,
CrossRef
Pubmed
Google scholar
|
[42] |
Sugimoto T, Matijevic E. Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels. Journal of Colloid and Interface Science, 1980, 74(1): 227–243
CrossRef
Google scholar
|
[43] |
Jolivet J P. Metal Oxide Chemistry and Synthesis: From Solutions to Solid State. New York, USA: John Wiley & Sons, Ltd., 2000
|
[44] |
Nishio K, Ikeda M, Gokon N,
CrossRef
Google scholar
|
[45] |
Bazylinski D A, Garratt-Reed A J, Frankel R B. Electron microscopic studies of magnetosomes in magnetotactic bacteria. Microscopy Research and Technique, 1994, 27(5): 389–401
CrossRef
Pubmed
Google scholar
|
[46] |
Balkwill D L, Maratea D, Blakemore R P. Ultrastructure of a magnetotactic spirillum. Journal of Bacteriology, 1980, 141(3): 1399–1408
|
[47] |
Lins U, Freitas F, Keim C N,
CrossRef
Pubmed
Google scholar
|
[48] |
Butter K, Hoell A, Wiedenmann A,
CrossRef
Google scholar
|
[49] |
Moskowitz B M, Frankel R B, Flanders P,
CrossRef
Google scholar
|
[50] |
Deatsch A E, Evans B A. Heating efficiency in magnetic nanoparticle hyperthermia. Journal of Magnetism and Magnetic Materials, 2014, 354: 163–172
CrossRef
Google scholar
|
[51] |
Liu Y, Li G R, Guo F F,
CrossRef
Pubmed
Google scholar
|
[52] |
Alphandéry E, Faure S, Seksek O,
CrossRef
Pubmed
Google scholar
|
[53] |
Martinez-Boubeta C, Simeonidis K, Makridis A,
CrossRef
Pubmed
Google scholar
|
[54] |
Józefczak A, Leszczyński B, Skumiel A,
CrossRef
Google scholar
|
[55] |
Revathy T, Jayasri M A, Suthindhiran K. Toxicity assessment of magnetosomes in different models. 3 Biotech, 2017, 7: 126 (11 pages)
CrossRef
Google scholar
|
[56] |
Patravale V, Dandekar P, Jain R. Nanoparticulate Drug Delivery: Perspectives on the Transition from Laboratory to Market. Cambridge, UK: Woodhead Publishing Limited, 2012, 123–155
CrossRef
Google scholar
|
[57] |
Liu R, Liu J, Tong J,
CrossRef
Google scholar
|
[58] |
Naqvi S, Samim M, Abdin M Z,
CrossRef
Pubmed
Google scholar
|
[59] |
Li X, Wang B, Jin H,
CrossRef
Pubmed
Google scholar
|
[60] |
Balasubramanian S, Girija A R, Nagaoka Y,
CrossRef
Pubmed
Google scholar
|
[61] |
Chalkidou A, Simeonidis K, Angelakeris M,
CrossRef
Google scholar
|
[62] |
Sun J, Tang T, Duan J,
CrossRef
Pubmed
Google scholar
|
[63] |
Delcroix G J, Jacquart M, Lemaire L,
CrossRef
Pubmed
Google scholar
|
[64] |
Hu F, Neoh K G, Cen L,
CrossRef
Pubmed
Google scholar
|
[65] |
Hussain S M, Hess K L, Gearhart J M,
CrossRef
Pubmed
Google scholar
|
[66] |
Gupta A K, Curtis A S G. Surface modified superparamagnetic nanoparticles for drug delivery: Interaction studies with human fibroblasts in culture. Journal of Materials Science: Materials in Medicine, 2004, 15(4): 493–496
CrossRef
Google scholar
|
[67] |
Sun J B, Duan J H, Dai S L,
CrossRef
Pubmed
Google scholar
|
[68] |
Lei Han, Li S Y, Yong Yang,
CrossRef
Pubmed
Google scholar
|
[69] |
Xiaoming L, Lee S C, Zhang S,
|
[70] |
Derfus A, Chan W, Bhatia S. Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Advanced Materials, 2004, 16(12): 961–966
CrossRef
Google scholar
|
[71] |
Vonarbourg A, Passirani C, Saulnier P,
CrossRef
Pubmed
Google scholar
|
[72] |
Kim J A, Lee H J, Kang H J,
CrossRef
Pubmed
Google scholar
|
[73] |
Dandekar P, Dhumal R, Jain R,
CrossRef
Pubmed
Google scholar
|
[74] |
García A, Espinosa R, Delgado L,
CrossRef
Google scholar
|
[75] |
Timko M, Dzarova A, Kovac J,
CrossRef
Google scholar
|
[76] |
Hergt R, Hiergeist R, Zeisberger M,
CrossRef
Google scholar
|
[77] |
Alphandéry E, Guyot F, Chebbi I. Preparation of chains of magnetosomes, isolated from Magnetospirillum magneticum strain AMB-1 magnetotactic bacteria, yielding efficient treatment of tumors using magnetic hyperthermia. International Journal of Pharmaceutics, 2012, 434(1–2): 444–452
CrossRef
Pubmed
Google scholar
|
[78] |
Hu L L, Zhang F, Wang Z,
CrossRef
Google scholar
|
[79] |
Xiang Z, Yang X, Xu J,
CrossRef
Pubmed
Google scholar
|
[80] |
Mody V V, Singh A, Wesley B. Basics of magnetic nanoparticles for their application in the field of magnetic fluid hyperthermia. European Journal of Nanomedicine, 2013 doi:10.1515/ejnm-2012-0008
|
[81] |
Grouzdev D S, Dziuba M V, Kurek D V,
CrossRef
Pubmed
Google scholar
|
[82] |
Takahashi M, Yoshino T, Matsunaga T. Surface modification of magnetic nanoparticles using asparagines-serine polypeptide designed to control interactions with cell surfaces. Biomaterials, 2010, 31(18): 4952–4957
CrossRef
Pubmed
Google scholar
|
[83] |
Matsunaga T, Takahashi M, Yoshino T,
CrossRef
Pubmed
Google scholar
|
[84] |
Bañobre-López M, Teijeiro A, Rivas J. Magnetic nanoparticle-based hyperthermia for cancer treatment. Reports of Practical Oncology and Radiotherapy, 2013, 18(6): 397–400
CrossRef
Pubmed
Google scholar
|
[85] |
Bender E, Schramm T. Instruments for facilitation and improvement of procedures in cell and tissue cultivation. 2. Roller arrangement according to the prefabricated construction system, lifting arrangement for pressure filters and semi-automatic feeding device. Zeitschrift fur Medizinische Labortechnik, 1966, 7(6): 365–369
Pubmed
|
[86] |
Strom R, Crifo C, Rossi-Fanelli A,
CrossRef
Pubmed
Google scholar
|
[87] |
Sun J B, Wang Z L, Duan J H,
CrossRef
Pubmed
Google scholar
|
[88] |
Brown M A, Semelka R C. MRI: Basic Principles and Applications. 3rd ed. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2003, 33–48
|
[89] |
Mitchell D G, Cohen M S. MRI Principles. 2nd ed. Philadelphia, PA, USA: W. B. Saunders Company, 2004
|
[90] |
Orlando T, Mannucci S, Fantechi E,
CrossRef
Google scholar
|
[91] |
Kraupner A, Eberbeck D, Heinke D,
CrossRef
Pubmed
Google scholar
|
[92] |
Mériaux S, Boucher M, Marty B,
CrossRef
Pubmed
Google scholar
|
[93] |
Widder K J, Morris R M, Poore G,
CrossRef
Pubmed
Google scholar
|
[94] |
Pulfer S K, Gallo J M. Enhanced brain tumor selectivity of cationic magnetic polysaccharide microspheres. Journal of Drug Targeting, 1998, 6(3): 215–227
CrossRef
Pubmed
Google scholar
|
[95] |
Yalcin S, Unsoy G, Mutlu P,
CrossRef
Pubmed
Google scholar
|
[96] |
Häfeli U O, Riffle J S, Harris-Shekhawat L,
CrossRef
Pubmed
Google scholar
|
[97] |
Long R, Liu Y, Dai Q,
CrossRef
Pubmed
Google scholar
|
[98] |
Liu Y G, Dai Q L, Wang S B,
CrossRef
Pubmed
Google scholar
|
[99] |
Yoshino T, Hirabe H, Takahashi M,
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |