A review on graphene-based materials as versatile cancer biomarker sensors
Shalmali BASU, Kamalika SEN
A review on graphene-based materials as versatile cancer biomarker sensors
Early detection of cancer has multitude of advantages like early diagnosis, reduced risk, ease in the treatment and follow up of recurrence. New and developed techniques are always under research to control the spreading malignancy. Graphene is an emerging star in biomedical field as it exhibits exceptional thermal, electrical and optical properties. Here, we review application of graphene-based materials in developing biosensing devices for the detection of different cancer biomarkers at concentrations down to sub-toxic levels. Different analytical methodologies chosen for sensing have been undertaken and their performance and background have been discussed. The trend of use of these methodologies can also be perceived from the graphical data presented.
graphene / cancer biomarker / biosensing / analytical methods
[1] |
Akinwande D, Brennan C J, Bunch J S,
CrossRef
Google scholar
|
[2] |
Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene. Carbon, 2010, 48(8): 2127–2150
CrossRef
Google scholar
|
[3] |
Shareena T P D, McShan D, Dasmahapatra A K,
CrossRef
Pubmed
Google scholar
|
[4] |
Cobas E, Friedman A L, Van’t Erve O M,
CrossRef
Pubmed
Google scholar
|
[5] |
Chen Z, Ren W, Gao L,
CrossRef
Pubmed
Google scholar
|
[6] |
Loh K P, Bao Q, Ang P K,
CrossRef
Google scholar
|
[7] |
Tsoukleri G, Parthenios J, Papagelis K,
CrossRef
Pubmed
Google scholar
|
[8] |
Eftekhari A, Jafarkhani P. Curly graphene with specious interlayers displaying superior capacity for hydrogen storage. The Journal of Physical Chemistry C, 2013, 117(48): 25845–25851
CrossRef
Google scholar
|
[9] |
Pop E, Varshney V, Roy A K. Thermal properties of graphene: Fundamentals and applications. MRS Bulletin, 2012, 37(12): 1273–1281
CrossRef
Google scholar
|
[10] |
Castro Neto A H, Guinea F, Peres N M R,
CrossRef
Google scholar
|
[11] |
Chen J H, Jang C, Xiao S,
CrossRef
Pubmed
Google scholar
|
[12] |
Bunch J S. Mechanical and Electrical Properties of Graphene Sheets. Ithaca, NY: Cornell University, 2008
|
[13] |
Bao Q, Loh K P. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 2012, 6(5): 3677–3694
CrossRef
Pubmed
Google scholar
|
[14] |
Plutnar J, Pumera M, Sofer Z. The chemistry of CVD graphene. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2018, 6(23): 6082–6101
CrossRef
Google scholar
|
[15] |
Shu H, Tao X M, Ding F. What are the active carbon species during graphene chemical vapor deposition growth? Nanoscale, 2015, 7(5): 1627–1634
CrossRef
Pubmed
Google scholar
|
[16] |
Jin Z, McNicholas T P, Shih C J,
CrossRef
Google scholar
|
[17] |
Park S, Ruoff R S. Chemical methods for the production of graphenes. Nature Nanotechnology, 2009, 4(4): 217–224
CrossRef
Pubmed
Google scholar
|
[18] |
Withers F, Bointon T H, Craciun M F,
CrossRef
Pubmed
Google scholar
|
[19] |
Fowler J D, Allen M J, Tung V C,
CrossRef
Pubmed
Google scholar
|
[20] |
Zhu S E, Shabani R, Rho J,
CrossRef
Pubmed
Google scholar
|
[21] |
Wu L, Qu X. Cancer biomarker detection: recent achievements and challenges. Chemical Society Reviews, 2015, 44(10): 2963–2997
CrossRef
Pubmed
Google scholar
|
[22] |
Wang B, Akiba U, Anzai J I. Recent progress in nanomaterial-based electrochemical biosensors for cancer biomarkers: A review. Molecules, 2017, 22(7): 1048
CrossRef
Pubmed
Google scholar
|
[23] |
Malhotra B D, Kumar S, Pandey C M. Nanomaterials based biosensors for cancer biomarker detection. Journal of Physics Conference Series, 2016, 704: 012011
CrossRef
Google scholar
|
[24] |
Pasinszki T, Krebsz M, Tung T T,
CrossRef
Pubmed
Google scholar
|
[25] |
Rauf S, Mishra G K, Azhar J,
CrossRef
Pubmed
Google scholar
|
[26] |
Yadegari A, Omidi M, Yazdian F,
CrossRef
Google scholar
|
[27] |
Ravalli A, Voccia D, Palchetti I,
CrossRef
Pubmed
Google scholar
|
[28] |
Kumar V, Srivastava S, Umrao S,
CrossRef
Google scholar
|
[29] |
Gazze A, Ademefun R, Conlan R S,
CrossRef
Google scholar
|
[30] |
Dong W, Ren Y, Bai Z,
CrossRef
Pubmed
Google scholar
|
[31] |
Ali M A, Mondal K, Jiao Y,
CrossRef
Pubmed
Google scholar
|
[32] |
Hassanpour S, Hasanzadeh M, Saadati A,
CrossRef
Google scholar
|
[33] |
Gugoasa L A, AĺOgaidi A J M, Stefan-van Staden R I,
CrossRef
Google scholar
|
[34] |
Wang Y, Luo J, Liu J,
CrossRef
Pubmed
Google scholar
|
[35] |
Ali M A, Tabassum S, Wang Q,
CrossRef
Pubmed
Google scholar
|
[36] |
Abdurhman A A M, Zhang Y, Zhang G,
CrossRef
Pubmed
Google scholar
|
[37] |
Zhang Y, Xiao J, Lv Q,
CrossRef
Pubmed
Google scholar
|
[38] |
Li C, Qiu X, Deng K,
CrossRef
Google scholar
|
[39] |
Saeed A A, Sánchez J L A, O’Sullivan C K,
CrossRef
Pubmed
Google scholar
|
[40] |
Gao Y S, Zhu X F, Yang T T,
CrossRef
Google scholar
|
[41] |
Chen H, Zhang B, Cui Y,
CrossRef
Google scholar
|
[42] |
Li H, Qin J, Li M,
CrossRef
Google scholar
|
[43] |
Chen X, Jia X, Han J,
CrossRef
Pubmed
Google scholar
|
[44] |
Zhang Q, Zhao Q, Fu M,
CrossRef
Pubmed
Google scholar
|
[45] |
Amani J, Khoshroo A, Rahimi-Nasrabadi M. Electrochemical immunosensor for the breast cancer marker CA 15-3 based on the catalytic activity of a CuS/reduced graphene oxide nanocomposite towards the electrooxidation of catechol. Microchimica Acta, 2018, 185(1): 79
CrossRef
Pubmed
Google scholar
|
[46] |
Rostamabadi P F, Heydari-Bafrooei E. Impedimetric aptasensing of the breast cancer biomarker HER2 using a glassy carbon electrode modified with gold nanoparticles in a composite consisting of electrochemically reduced graphene oxide and single-walled carbon nanotubes. Microchimica Acta, 2019, 186(8): 495
CrossRef
Pubmed
Google scholar
|
[47] |
Rajaji U, Muthumariyappan A, Chen S M,
CrossRef
Google scholar
|
[48] |
Sharafeldin M, Bishop G W, Bhakta S,
CrossRef
Pubmed
Google scholar
|
[49] |
Li Q, Tang D, Lou F,
CrossRef
Google scholar
|
[50] |
Roberts A, Tripathi P P, Gandhi S. Graphene nanosheets as an electric mediator for ultrafast sensing of urokinase plasminogen activator receptor-A biomarker of cancer. Biosensors & Bioelectronics, 2019, 141: 111398
CrossRef
Pubmed
Google scholar
|
[51] |
Tan Z, Cao L, Yang Y,
CrossRef
Pubmed
Google scholar
|
[52] |
Wu Y, Xue P, Kang Y,
CrossRef
Pubmed
Google scholar
|
[53] |
Wu Y, Xue P, Kang Y,
CrossRef
Pubmed
Google scholar
|
[54] |
Yang K, Qi L, Gao Z,
CrossRef
Google scholar
|
[55] |
Qu F, Li T, Yang M. Colorimetric platform for visual detection of cancer biomarker based on intrinsic peroxidase activity of graphene oxide. Biosensors & Bioelectronics, 2011, 26(9): 3927–3931
CrossRef
Pubmed
Google scholar
|
[56] |
Jonous Z A, Shayeh J S, Yazdian F,
CrossRef
Google scholar
|
[57] |
Alarfaj N A, El-Tohamy M F. A label-free electrochemical immunosensor based on gold nanoparticles and graphene oxide for the detection of tumor marker calcitonin. New Journal of Chemistry, 2017, 41(19): 11029–11035
CrossRef
Google scholar
|
[58] |
Azimzadeh M, Rahaie M, Nasirizadeh N,
CrossRef
Pubmed
Google scholar
|
[59] |
Park S, Singh A, Kim S,
CrossRef
Pubmed
Google scholar
|
[60] |
Pan L H, Kuo S H, Lin T Y,
CrossRef
Pubmed
Google scholar
|
[61] |
Pothipor C, Wiriyakun N, Putnin T,
CrossRef
Google scholar
|
[62] |
Shekari Z, Zare H R, Falahati A. Electrochemical sandwich aptasensor for the carcinoembryonic antigen using graphene quantum dots, gold nanoparticles and nitrogen doped graphene modified electrode and exploiting the peroxidase-mimicking activity of a G-quadruplex DNAzyme. Microchimica Acta, 2019, 186(8): 530
CrossRef
Pubmed
Google scholar
|
[63] |
Imran H, Manikandan P N, Prabhu D,
CrossRef
Google scholar
|
[64] |
Jin B, Wang P, Mao H,
CrossRef
Pubmed
Google scholar
|
[65] |
Kilic T, Erdem A, Erac Y,
CrossRef
Google scholar
|
[66] |
Wang R, Xue C. A sensitive electrochemical immunosensor for alpha-fetoprotein based on covalently incorporating a bio-recognition element onto a graphene modified electrode via diazonium chemistry. Analytical Methods, 2013, 5(19): 5195–5200
CrossRef
Google scholar
|
[67] |
Yang M, Javadi A, Li H,
CrossRef
Pubmed
Google scholar
|
[68] |
Du D, Zou Z, Shin Y,
CrossRef
Pubmed
Google scholar
|
[69] |
Lin C W, Wei K C, Liao S S,
CrossRef
Pubmed
Google scholar
|
[70] |
Ali M A, Singh C, Srivastava S,
CrossRef
Google scholar
|
[71] |
Pachauri N, Dave K, Dinda A,
CrossRef
Pubmed
Google scholar
|
[72] |
Salahandish R, Ghaffarinejad A, Omidinia E,
CrossRef
Pubmed
Google scholar
|
[73] |
Xi J, Xie C, Zhang Y,
CrossRef
Pubmed
Google scholar
|
[74] |
Li H, He J, Li S,
CrossRef
Pubmed
Google scholar
|
[75] |
Yang L, Zhen S J, Li Y F,
CrossRef
Pubmed
Google scholar
|
[76] |
Singh V K, Kumar S, Pandey S K,
CrossRef
Pubmed
Google scholar
|
[77] |
Miao L, Jiao L, Zhang J,
CrossRef
Google scholar
|
[78] |
Barman S C, Hossain M F, Yoon H,
CrossRef
Pubmed
Google scholar
|
[79] |
Shahrokhian S, Salimian R. Ultrasensitive detection of cancer biomarkers using conducting polymer/electrochemically reduced graphene oxide-based biosensor: Application toward BRCA1 sensing. Sensors and Actuators B: Chemical, 2018, 266: 160–169
CrossRef
Google scholar
|
[80] |
Yang M, Javadi A, Gong S. Sensitive electrochemical immunosensor for the detection of cancer biomarker using quantum dot functionalized graphene sheets as labels. Sensors and Actuators B: Chemical, 2011, 155(1): 357–360
CrossRef
Google scholar
|
[81] |
Freitas M, Nouws H P A, Delerue-Matos C. Electrochemical sensing platforms for HER2-ECD breast cancer biomarker detection. Electroanalysis, 2019, 31(1): 121–128
CrossRef
Google scholar
|
[82] |
Bai R G, Muthoosamy K, Shipton F N,
CrossRef
Google scholar
|
[83] |
Assari P, Rafati A A, Feizollahi A,
CrossRef
Pubmed
Google scholar
|
[84] |
Shoja Y, Kermanpur A, Karimzadeh F. Diagnosis of EGFR exon21 L858R point mutation as lung cancer biomarker by electrochemical DNA biosensor based on reduced graphene oxide/functionalized ordered mesoporous carbon/Ni-oxytetracycline metallopolymer nanoparticles modified pencil graphite electrode. Biosensors & Bioelectronics, 2018, 113: 108–115
CrossRef
Pubmed
Google scholar
|
[85] |
Ma H, Zhang X, Li X,
CrossRef
Pubmed
Google scholar
|
[86] |
Rauf S, Mishra G K, Azhar J,
CrossRef
Pubmed
Google scholar
|
[87] |
Shahzad F, Zaidi S A, Koo C M. Highly sensitive electrochemical sensor based on environmentally friendly biomass-derived sulfur-doped graphene for cancer biomarker detection. Sensors and Actuators B: Chemical, 2017, 241: 716–724
CrossRef
Google scholar
|
[88] |
Feng L, Wu L, Wang J,
CrossRef
Pubmed
Google scholar
|
[89] |
Kumar S, Sharma J G, Maji S,
CrossRef
Pubmed
Google scholar
|
[90] |
Wang X, Wang C, Qu K,
CrossRef
Google scholar
|
[91] |
Zhang F R, Lu J Y, Yao Q F,
CrossRef
Pubmed
Google scholar
|
[92] |
Cui F, Ji J, Sun J,
CrossRef
Pubmed
Google scholar
|
[93] |
Cao Y, Dong H, Yang Z,
CrossRef
Pubmed
Google scholar
|
[94] |
Song J, Wu S, Yang X,
CrossRef
Pubmed
Google scholar
|
[95] |
Hossain M B, Islam M M, Abdulrazak L F,
CrossRef
Google scholar
|
[96] |
Chiu N F, Lin T L, Kuo C T. Highly sensitive carboxyl-graphene oxide-based surface plasmon resonance immunosensor for the detection of lung cancer for cytokeratin 19 biomarker in human plasma. Sensors and Actuators B: Chemical, 2018, 265: 264–272
CrossRef
Google scholar
|
[97] |
Al-Ogaidi I, Gou H, Aguilar Z P,
CrossRef
Pubmed
Google scholar
|
[98] |
Pal M, Khan R. Graphene oxide layer decorated gold nanoparticles based immunosensor for the detection of prostate cancer risk factor. Analytical Biochemistry, 2017, 536: 51–58
CrossRef
Google scholar
|
[99] |
Wang H, Chen H, Huang Z,
CrossRef
Pubmed
Google scholar
|
[100] |
Kim T H, Yoon H J, Fouladdel S,
CrossRef
Pubmed
Google scholar
|
[101] |
Yang Z, Qin L, Yang D,
CrossRef
Pubmed
Google scholar
|
[102] |
Vilela P, El-Sagheer A, Millar T M,
CrossRef
Pubmed
Google scholar
|
[103] |
Viraka Nellore B P, Kanchanapally R, Pramanik A,
CrossRef
Pubmed
Google scholar
|
[104] |
He L, Pagneux Q, Larroulet I,
CrossRef
Pubmed
Google scholar
|
[105] |
Tehrani Z, Burwell G, Azmi M A M,
CrossRef
Google scholar
|
[106] |
Wang X, Wang C, Qu K,
CrossRef
Google scholar
|
[107] |
Sharker S M, Kang E B, Shin C I,
CrossRef
Google scholar
|
[108] |
Wang B, Song Y, Ge L,
CrossRef
Google scholar
|
[109] |
Cheng Y, Yuan R, Chai Y,
CrossRef
Pubmed
Google scholar
|
[110] |
Xu S, Liu Y, Wang T,
CrossRef
Pubmed
Google scholar
|
[111] |
Heidari R, Rashidiani J, Abkar M,
CrossRef
Pubmed
Google scholar
|
[112] |
Liu F, Zhang Y, Ge S,
CrossRef
Pubmed
Google scholar
|
[113] |
Rashidiani J, Kamali M, Sedighian H,
CrossRef
Pubmed
Google scholar
|
[114] |
Cui M, Yu R, Wang X,
CrossRef
Google scholar
|
[115] |
He Q, Wu S, Yin Z,
CrossRef
Google scholar
|
[116] |
Hao Z, Pan Y, Shao W,
CrossRef
Pubmed
Google scholar
|
[117] |
Myung S, Solanki A, Kim C,
CrossRef
Pubmed
Google scholar
|
[118] |
Rajesh
CrossRef
Google scholar
|
[119] |
Zhou L, Wang K, Sun H,
CrossRef
Google scholar
|
[120] |
Hao Z, Pan Y, Huang C,
CrossRef
Pubmed
Google scholar
|
[121] |
Mansouri Majd S, Salimi A. Ultrasensitive flexible FET-type aptasensor for CA 125 cancer marker detection based on carboxylated multiwalled carbon nanotubes immobilized onto reduced graphene oxide film. Analytica Chimica Acta, 2018, 1000: 273–282
CrossRef
Pubmed
Google scholar
|
[122] |
Nag S, Duarte L, Bertrand E,
CrossRef
Pubmed
Google scholar
|
[123] |
Koncki R. Recent developments in potentiometric biosensors for biomedical analysis. Analytica Chimica Acta, 2007, 599(1): 7–15
CrossRef
Pubmed
Google scholar
|
[124] |
Hong Z, Chen G, Yu S,
CrossRef
Google scholar
|
[125] |
Li F, Hu S, Zhang R,
CrossRef
Pubmed
Google scholar
|
[126] |
Truta L A, Ferreira N S, Sales M G F. Graphene-based biomimetic materials targeting urine metabolite as potential cancer biomarker: application over different conductive materials for potentiometric transduction. Electrochimica Acta, 2014, 150: 99–107
CrossRef
Pubmed
Google scholar
|
[127] |
Sur U K. Surface-enhanced Raman spectroscopy. Resonance, 2010, 15(2): 154–164
CrossRef
Google scholar
|
[128] |
Kumar S, Kumar S, Srivastava S,
CrossRef
Pubmed
Google scholar
|
[129] |
Papi M, Palmieri V, Digiacomo L,
CrossRef
Pubmed
Google scholar
|
[130] |
Zhang X F, Zhang Z W, He Y L,
CrossRef
Google scholar
|
/
〈 | 〉 |