Feather-like NiCo2O4 self-assemble from porous nanowires as binder-free electrodes for low charge transfer resistance
Dandan HAN, Jinhe WEI, Shanshan WANG, Yifan PAN, Junli XUE, Yen WEI
Feather-like NiCo2O4 self-assemble from porous nanowires as binder-free electrodes for low charge transfer resistance
The unique feather-like arrays composing of ultrathin secondary nanowires are fabricated on nickel foam (NF) through a facile hydrothermal strategy. Thus, the enhancement of electrochemical properties especially the low charge transfer resistance strongly depends on more active sites and porosity of the morphology. Benefiting from the unique structure, the optimized NiCo2O4 electrode delivers a significantly lower charge transfer resistance of 0.32 Ω and a high specific capacitance of 450 F·g−1 at 0.5 A·g−1, as well as a superior cycling stability of 139.6% capacitance retention. The improvement of the electrochemical energy storage property proves the potential of the fabrication of various binary metal oxide electrodes for applications in the electrochemical energy field.
feather-like NiCo2O4 / binder-free electrode / charge transfer resistance / supercapacitor
[1] |
Lu X H, Yu M H, Wang G M,
CrossRef
Google scholar
|
[2] |
Yuan K, Lützenkirchen-Hecht D, Li L,
CrossRef
Pubmed
Google scholar
|
[3] |
Simon P, Gogotsi Y. Capacitive energy storage in nanostructured carbon-electrolyte systems. Accounts of Chemical Research, 2013, 46(5): 1094–1103
CrossRef
Pubmed
Google scholar
|
[4] |
Zou K, Cai P, Liu C,
CrossRef
Google scholar
|
[5] |
Yun X, Wu S, Li J,
CrossRef
Pubmed
Google scholar
|
[6] |
Luo X, Wang J, Dooner M,
CrossRef
Google scholar
|
[7] |
Zhang X, Li S, El-Khodary S A,
CrossRef
Pubmed
Google scholar
|
[8] |
Wang M Q, Li Z Q, Wang C X,
CrossRef
Google scholar
|
[9] |
El-Khodary S A, El-Enany G M, El-Okr M,
CrossRef
Google scholar
|
[10] |
Kale S B, Lokhande A C, Pujari R B,
CrossRef
Pubmed
Google scholar
|
[11] |
Vijayan B L, Krishnan S G, Zain N K,
CrossRef
Google scholar
|
[12] |
Chen Y Y, Wang Y, Shen X P,
CrossRef
Google scholar
|
[13] |
Chen Y Y, Cai R, Yang Y,
CrossRef
Google scholar
|
[14] |
Xia X H, Tu J P, Mai Y J,
CrossRef
Google scholar
|
[15] |
Zhang G X, Xiao X, Li B,
CrossRef
Google scholar
|
[16] |
Meher S K, Rao G R. Ultralayered Co3O4 for high-performance supercapacitor applications. The Journal of Physical Chemistry C, 2011, 115(31): 15646–15654
CrossRef
Google scholar
|
[17] |
Wang J P, Zhou H, Zhu M Z,
CrossRef
Google scholar
|
[18] |
Zhang X J, Shi W H, Zhu J X,
CrossRef
Google scholar
|
[19] |
Cao C Y, Guo W, Cui Z M,
CrossRef
Google scholar
|
[20] |
Wu Z, Zhu Y, Ji X. NiCo2O4-based materials for electrochemical supercapacitors. Journal of Materials Chemistry, 2014, 2(36): 14759–14772
CrossRef
Google scholar
|
[21] |
Li W, Yang F, Hu Z,
CrossRef
Google scholar
|
[22] |
Wang Z, Zhu Z, Zhang C,
CrossRef
Google scholar
|
[23] |
Wei H, Wang J, Yu L,
CrossRef
Google scholar
|
[24] |
Wei G, He J, Zhang W,
CrossRef
Pubmed
Google scholar
|
[25] |
Huang G Y, Yang Y, Sun H Y,
CrossRef
Google scholar
|
[26] |
Qiu K, Lu M, Luo Y,
CrossRef
Google scholar
|
[27] |
Luo Y, Zhang H, Guo D,
CrossRef
Google scholar
|
[28] |
Waghmode R B, Torane A P. Hierarchical 3D NiCo2O4, nanoflowers as electrode materials for high performance supercapacitors. Journal of Materials Science: Materials in Electronics, 2016, 27(6): 6133–6139
CrossRef
Google scholar
|
[29] |
Qi X, Zheng W, He G,
CrossRef
Google scholar
|
[30] |
Li L, Peng S, Cheah Y,
CrossRef
Pubmed
Google scholar
|
[31] |
Wu Z, Zhu Y, Ji X. NiCo2O4-based materials for electrochemical supercapacitors. Journal of Materials Chemistry, 2014, 2(36): 14759–14772
CrossRef
Google scholar
|
[32] |
Lei Y, Wang Y Y, Yang W,
CrossRef
Google scholar
|
[33] |
Nguyen T V, Son L T, Thuy V V,
CrossRef
Pubmed
Google scholar
|
[34] |
Li Q, Lu C, Chen C,
CrossRef
Google scholar
|
[35] |
Zou K, Cai P, Liu C,
CrossRef
Google scholar
|
[36] |
Yang X F, Wang A, Qiao B,
CrossRef
Pubmed
Google scholar
|
[37] |
Li J, Xiong S, Liu Y,
CrossRef
Pubmed
Google scholar
|
[38] |
Wang H, Gong Y, Li D,
CrossRef
Google scholar
|
/
〈 | 〉 |