Hollow mesoporous silica nanoparticles as nanocarriers employed in cancer therapy: A review
Yimin ZHOU, Qingni XU, Chaohua LI, Yuqi CHEN, Yueli ZHANG, Bo LU
Hollow mesoporous silica nanoparticles as nanocarriers employed in cancer therapy: A review
Hollow mesoporous silica nanoparticles (HMSNs) have become an attractive drug carrier because of their unique characteristics including stable physicochemical properties, large specific surface area and facile functionalization, especially made into intelligent drug delivery systems (DDSs) for cancer therapy. HMSNs are employed to transport traditional anti-tumor drugs, which can solve the problems of drugs with instability, poor solubility and lack of recognition, etc., while significantly improving the anti-tumor effect. And an unexpected good result will be obtained by combining functional molecules and metal species with HMSNs for cancer diagnosis and treatment. Actually, HMSNs-based DDSs have developed relatively mature in recent years. This review briefly describes how to successfully prepare an ordinary HMSNs-based DDS, as well as its degradation, different stimuli-responses, targets and combination therapy. These versatile intelligent nanoparticles show great potential in clinical aspects.
hollow mesoporous silica nanoparticles / intelligent drug delivery system / stimuli response / targeting drug delivery / combination therapy
[1] |
Liu D, Yang F, Xiong F,
CrossRef
Pubmed
Google scholar
|
[2] |
Du Y, Chen B. Combination of drugs and carriers in drug delivery technology and its development. Drug Design, Development and Therapy, 2019, 13: 1401–1408
CrossRef
Pubmed
Google scholar
|
[3] |
Bobo D, Robinson K J, Islam J,
CrossRef
Pubmed
Google scholar
|
[4] |
Castillo R R, Lozano D, González B,
CrossRef
Pubmed
Google scholar
|
[5] |
Wu S H, Mou C Y, Lin H P. Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews, 2013, 42(9): 3862–3875
CrossRef
Pubmed
Google scholar
|
[6] |
Li Y, Li N, Pan W,
CrossRef
Pubmed
Google scholar
|
[7] |
Hao N, Li L, Tang F. Roles of particle size, shape and surface chemistry of mesoporous silica nanomaterials on biological systems. International Materials Reviews, 2017, 62(2): 57–77
CrossRef
Google scholar
|
[8] |
Kankala R K, Zhang H, Liu C G,
CrossRef
Google scholar
|
[9] |
Xu C, Sun Y, Yu Y,
CrossRef
Pubmed
Google scholar
|
[10] |
Gao Y, Gu S, Zhang Y,
CrossRef
Pubmed
Google scholar
|
[11] |
Dai L, Zhang Q, Gu H,
CrossRef
Pubmed
Google scholar
|
[12] |
Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Advanced Materials, 2012, 24(12): 1504–1534
CrossRef
Pubmed
Google scholar
|
[13] |
Huang L, Liu J, Gao F,
CrossRef
Pubmed
Google scholar
|
[14] |
Argyo C, Weiss V, Bräuchle C,
CrossRef
Google scholar
|
[15] |
Martínez-Carmona M, Lozano D, Colilla M,
CrossRef
Pubmed
Google scholar
|
[16] |
Kankala R K, Han Y H, Na J,
CrossRef
Pubmed
Google scholar
|
[17] |
Cao Z, Li W, Liu R,
|
[18] |
Chen L, Zhou X, He C. Mesoporous silica nanoparticles for tissue-engineering applications. Wiley Interdisciplinary Reviews- Nanomedicine and Nanobiotechnology, 2019, 11(6): e1573
CrossRef
Pubmed
Google scholar
|
[19] |
Hoang Thi T T, Cao V D, Nguyen T N Q,
CrossRef
Pubmed
Google scholar
|
[20] |
Zhang M, Liu J, Kuang Y,
CrossRef
Pubmed
Google scholar
|
[21] |
Liu J, Luo Z, Zhang J,
CrossRef
Pubmed
Google scholar
|
[22] |
Xu C, Cao L, Zhao P,
CrossRef
Google scholar
|
[23] |
Guo H, Yi S, Feng K,
CrossRef
Google scholar
|
[24] |
Sun X, Wang N, Yang L Y,
CrossRef
Pubmed
Google scholar
|
[25] |
Tran A V, Shim K, Vo Thi T T,
CrossRef
Pubmed
Google scholar
|
[26] |
Song N, Yang Y W. Molecular and supramolecular switches on mesoporous silica nanoparticles. Chemical Society Reviews, 2015, 44(11): 3474–3504
CrossRef
Pubmed
Google scholar
|
[27] |
Wen J, Yang K, Liu F,
CrossRef
Pubmed
Google scholar
|
[28] |
Singh R K, Patel K D, Mahapatra C,
CrossRef
Pubmed
Google scholar
|
[29] |
He Q, Shi J. MSN anti-cancer nanomedicines: chemotherapy enhancement, overcoming of drug resistance, and metastasis inhibition. Advanced Materials, 2014, 26(3): 391–411
CrossRef
Pubmed
Google scholar
|
[30] |
Palanikumar L, Kim J, Oh J Y,
CrossRef
Google scholar
|
[31] |
Manzano M, Vallet-Regí M. Mesoporous silica nanoparticles for drug delivery. Advanced Functional Materials, 2020, 30(2): 1902634
CrossRef
Google scholar
|
[32] |
Fatieiev Y, Croissant J G, Julfakyan K,
CrossRef
Pubmed
Google scholar
|
[33] |
Croissant J G, Fatieiev Y, Julfakyan K,
CrossRef
Pubmed
Google scholar
|
[34] |
Yang B, Chen Y, Shi J. Mesoporous silica/organosilica nanoparticles: Synthesis, biological effect and biomedical application. Materials Science and Engineering R: Reports, 2019, 137: 66–105
CrossRef
Google scholar
|
[35] |
Wang L, Huo M, Chen Y,
CrossRef
Pubmed
Google scholar
|
[36] |
Lin K, Liu Y, Huang H,
CrossRef
Pubmed
Google scholar
|
[37] |
Liu L, Kong C, Huo M,
CrossRef
Pubmed
Google scholar
|
[38] |
Croissant J, Cattoën X, Man M W,
CrossRef
Pubmed
Google scholar
|
[39] |
Chen Y, Meng Q, Wu M,
CrossRef
Pubmed
Google scholar
|
[40] |
Shao D, Li M, Wang Z,
CrossRef
Pubmed
Google scholar
|
[41] |
Zhang S, Chu Z, Yin C,
CrossRef
Pubmed
Google scholar
|
[42] |
Qian M, Chen L, Du Y,
CrossRef
Pubmed
Google scholar
|
[43] |
Michiels C, Tellier C, Feron O. Cycling hypoxia: A key feature of the tumor microenvironment. Biochimica et Biophysica Acta- Reviews on Cancer, 2016, 1866(1): 76–86 doi:10.1016/j.bbcan.2016.06.004
|
[44] |
Li Z, Barnes J C, Bosoy A,
CrossRef
Pubmed
Google scholar
|
[45] |
Zhu J, Niu Y, Li Y,
CrossRef
Pubmed
Google scholar
|
[46] |
Hou L, Zheng Y, Wang Y,
CrossRef
Pubmed
Google scholar
|
[47] |
Wang M, Wang T, Wang D,
CrossRef
Google scholar
|
[48] |
Zhang L, Bei H P, Piao Y,
|
[49] |
Hakeem A, Zahid F, Zhan G,
CrossRef
Pubmed
Google scholar
|
[50] |
Li Z, Zhang Y, Feng N. Mesoporous silica nanoparticles: synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery. Expert Opinion on Drug Delivery, 2019, 16(3): 219–237
CrossRef
Pubmed
Google scholar
|
[51] |
Niedermayer S, Weiss V, Herrmann A,
CrossRef
Pubmed
Google scholar
|
[52] |
Shi H, Liu S, Cheng J,
CrossRef
Pubmed
Google scholar
|
[53] |
Chen K, Chang C, Liu Z,
CrossRef
Pubmed
Google scholar
|
[54] |
Shao M, Chang C, Liu Z,
CrossRef
Pubmed
Google scholar
|
[55] |
Kuang Y, Chen H, Chen Z,
CrossRef
Pubmed
Google scholar
|
[56] |
Zhang J, Wu D, Li M F,
CrossRef
Pubmed
Google scholar
|
[57] |
Li L, Sun W, Li L,
CrossRef
Pubmed
Google scholar
|
[58] |
Naz S, Wang M, Han Y,
CrossRef
Pubmed
Google scholar
|
[59] |
Cheng K, Zhang Y, Li Y,
CrossRef
Google scholar
|
[60] |
Yang H, Chen Y, Chen Z,
CrossRef
Pubmed
Google scholar
|
[61] |
Pan Q S, Chen T T, Nie C P,
CrossRef
Pubmed
Google scholar
|
[62] |
Estrela J M, Ortega A, Obrador E. Glutathione in cancer biology and therapy. Critical Reviews in Clinical Laboratory Sciences, 2006, 43(2): 143–181
CrossRef
Pubmed
Google scholar
|
[63] |
Sha L, Zhao Q, Wang D,
CrossRef
Pubmed
Google scholar
|
[64] |
Meng H M, Lu L, Zhao X H,
CrossRef
Pubmed
Google scholar
|
[65] |
de la Rica R, Aili D, Stevens M M. Enzyme-responsive nanoparticles for drug release and diagnostics. Advanced Drug Delivery Reviews, 2012, 64(11): 967–978
CrossRef
Pubmed
Google scholar
|
[66] |
Liu J, Li Q, Zhang J,
CrossRef
Google scholar
|
[67] |
Luo W, Xu X, Zhou B,
CrossRef
Pubmed
Google scholar
|
[68] |
Eskandari P, Bigdeli B, Porgham Daryasari M,
CrossRef
Pubmed
Google scholar
|
[69] |
Yan Q, Guo X, Huang X,
CrossRef
Pubmed
Google scholar
|
[70] |
Hu J J, Lei Q, Peng M Y,
CrossRef
Pubmed
Google scholar
|
[71] |
Shu Y, Song R, Zheng A,
CrossRef
Pubmed
Google scholar
|
[72] |
Du W, Liu T, Xue F,
CrossRef
Google scholar
|
[73] |
Phua S Z F, Xue C, Lim W Q,
CrossRef
Google scholar
|
[74] |
Pan J, Wu R, Dai X,
CrossRef
Pubmed
Google scholar
|
[75] |
Ryplida B, Lee G, In I,
CrossRef
Pubmed
Google scholar
|
[76] |
Shi C E, You C Q, Pan L. Facile formulation of near-infrared light-triggered hollow mesoporous silica nanoparticles based on mitochondria targeting for on-demand chemo/photothermal/photodynamic therapy. Nanotechnology, 2019, 30(32): 325102
CrossRef
Pubmed
Google scholar
|
[77] |
Hai L, Jia X, He D,
|
[78] |
Manzano M, Vallet-Regí M. Mesoporous silica nanoparticles in nanomedicine applications. Journal of Materials Science: Materials in Medicine, 2018, 29(5): 65
CrossRef
Pubmed
Google scholar
|
[79] |
Chen C, Tang W, Jiang D,
CrossRef
Pubmed
Google scholar
|
[80] |
Park C, Lee K, Kim C. Photoresponsive cyclodextrin-covered nanocontainers and their sol–gel transition induced by molecular recognition. Angewandte Chemie, 2009, 48(7): 1275–1278
CrossRef
Pubmed
Google scholar
|
[81] |
Yu J, Qu H, Dong T,
CrossRef
Google scholar
|
[82] |
Wang Y, Gu H. Core–shell-type magnetic mesoporous silica nanocomposites for bioimaging and therapeutic agent delivery. Advanced Materials, 2015, 27(3): 576–585
CrossRef
Pubmed
Google scholar
|
[83] |
Sun Q, You Q, Wang J,
CrossRef
Pubmed
Google scholar
|
[84] |
Zhou R, Sun S, Li C,
CrossRef
Pubmed
Google scholar
|
[85] |
Ren S, Yang J, Ma L,
CrossRef
Pubmed
Google scholar
|
[86] |
Cheng C A, Chen W, Zhang L,
CrossRef
Pubmed
Google scholar
|
[87] |
Paris J L, Cabañas M V, Manzano M,
CrossRef
Pubmed
Google scholar
|
[88] |
Anirudhan T S, Nair A S. Temperature and ultrasound sensitive gatekeepers for the controlled release of chemotherapeutic drugs from mesoporous silica nanoparticles. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2018, 6(3): 428–439
CrossRef
Pubmed
Google scholar
|
[89] |
Li X, Xie C, Xia H,
CrossRef
Pubmed
Google scholar
|
[90] |
Zhu J Y, Zheng D W, Zhang M K,
CrossRef
Pubmed
Google scholar
|
[91] |
Golombek S K, May J N, Theek B,
CrossRef
Pubmed
Google scholar
|
[92] |
Wang L, Niu X, Song Q,
|
[93] |
Yan T, He J, Liu R,
CrossRef
Pubmed
Google scholar
|
[94] |
Zhou J, Li M, Lim W Q,
CrossRef
Pubmed
Google scholar
|
[95] |
Xu H, Wang Z, Li Y,
CrossRef
Google scholar
|
[96] |
Hu J J, Xiao D, Zhang X Z. Advances in peptide functionalization on mesoporous silica nanoparticles for controlled drug release. Small, 2016, 12(25): 3344–3359
CrossRef
Pubmed
Google scholar
|
[97] |
Wu M, Liu X, Bai H,
CrossRef
Pubmed
Google scholar
|
[98] |
Yu Z, Zhou P, Pan W,
CrossRef
Pubmed
Google scholar
|
[99] |
Wu Z Y, Lee C C, Lin H M. Hyaluronidase-responsive mesoporous silica nanoparticles with dual-imaging and dual-target function. Cancers, 2019, 11(5): 697
CrossRef
Pubmed
Google scholar
|
[100] |
Sun K, Gao Z, Zhang Y,
CrossRef
Pubmed
Google scholar
|
[101] |
Teo R D, Termini J, Gray H B. Lanthanides: Applications in cancer diagnosis and therapy. Journal of Medicinal Chemistry, 2016, 59(13): 6012–6024
CrossRef
Pubmed
Google scholar
|
[102] |
Huang C, Zhang Z, Guo Q,
CrossRef
Pubmed
Google scholar
|
[103] |
Lei Q, Qiu W X, Hu J J,
CrossRef
Pubmed
Google scholar
|
[104] |
Xu W, Qian J, Hou G,
CrossRef
Pubmed
Google scholar
|
[105] |
Zhou J, Wang M, Han Y,
|
[106] |
Yang B, Zhou S, Zeng J,
CrossRef
Google scholar
|
[107] |
Liu X, Yang T, Han Y,
CrossRef
Pubmed
Google scholar
|
[108] |
Jin R, Liu Z, Bai Y,
CrossRef
Google scholar
|
[109] |
Zhao G, Sun Y, Dong X. Zwitterionic polymer micelles with dual conjugation of doxorubicin and curcumin: synergistically enhanced efficacy against multidrug-resistant tumor cells. Langmuir, 2020, 36(9): 2383–2395
CrossRef
Pubmed
Google scholar
|
[110] |
Li C, Hu J, Li W,
CrossRef
Pubmed
Google scholar
|
[111] |
Liu Q, Zhou Y, Li M,
CrossRef
Pubmed
Google scholar
|
[112] |
Zhao P, Li L, Zhou S,
CrossRef
Pubmed
Google scholar
|
[113] |
Xie J, Xu W, Wu Y,
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |