Nickel-decorated TiO2 nanotube arrays as a self-supporting cathode for lithium--sulfur batteries
Yuming CHEN, Wenhao TANG, Jingru MA, Ben GE, Xiangliang WANG, Yufen WANG, Pengfei REN, Ruiping LIU
Nickel-decorated TiO2 nanotube arrays as a self-supporting cathode for lithium--sulfur batteries
Lithium–sulfur batteries are considered to be one of the strong competitors to replace lithium-ion batteries due to their large energy density. However, the dissolution of discharge intermediate products to the electrolyte, the volume change and poor electric conductivity of sulfur greatly limit their further commercialization. Herein, we proposed a self-supporting cathode of nickel-decorated TiO2 nanotube arrays (TiO2 NTs@Ni) prepared by an anodization and electrodeposition method. The TiO2 NTs with large specific surface area provide abundant reaction space and fast transmission channels for ions and electrons. Moreover, the introduction of nickel can enhance the electric conductivity and the polysulfide adsorption ability of the cathode. As a result, the TiO2 NTs@Ni–S electrode exhibits significant improvement in cycling and rate performance over TiO2 NTs, and the discharge capacity of the cathode maintains 719 mA·h·g−1 after 100 cycles at 0.1 C.
lithium--sulfur battery / TiO2 / self-supporting / polysulfide intermediate
[1] |
Wang L L, Ye Y S, Chen N,
CrossRef
Google scholar
|
[2] |
Peng H J, Hou T Z, Zhang Q,
CrossRef
Google scholar
|
[3] |
Kou W, Li X, Liu Y,
CrossRef
Pubmed
Google scholar
|
[4] |
Chen W, Qian T, Xiong J,
CrossRef
Pubmed
Google scholar
|
[5] |
Guo Z, Nie H, Yang Z,
CrossRef
Pubmed
Google scholar
|
[6] |
Liu D, Zhang C, Zhou G,
CrossRef
Pubmed
Google scholar
|
[7] |
Busche M R, Adelhelm P, Sommer H,
CrossRef
Google scholar
|
[8] |
Zhai Y, Dou Y, Zhao D,
CrossRef
Pubmed
Google scholar
|
[9] |
Wu F, Lee J T, Zhao E,
CrossRef
Pubmed
Google scholar
|
[10] |
Chen G, Zhong W, Li Y,
CrossRef
Pubmed
Google scholar
|
[11] |
Jiao L, Zhang C, Geng C N,
CrossRef
Google scholar
|
[12] |
Wang Y K, Zhang R F, Chen J,
CrossRef
Google scholar
|
[13] |
Zhang L P, Wang Y F, Gou S Q,
CrossRef
Google scholar
|
[14] |
Liang X, Nazar L F. In situreactive assembly of scalable core–shell sulfur–MnO2 composite cathodes. ACS Nano, 2016, 10(4): 4192–4198
CrossRef
Pubmed
Google scholar
|
[15] |
Chung S H, Manthiram A. A Li2S–TiS2-electrolyte composite for stable Li2S-based lithium–sulfur batteries. Advanced Energy Materials, 2019, 9(30): 1901397
CrossRef
Google scholar
|
[16] |
Chen M, Xu W, Jamil S,
CrossRef
Pubmed
Google scholar
|
[17] |
Cui Z Q, Yao J, Mei T,
CrossRef
Google scholar
|
[18] |
Liang X, Garsuch A, Nazar L F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium–sulfur batteries. Angewandte Chemie International Edition, 2015, 54(13): 3907–3911
CrossRef
Pubmed
Google scholar
|
[19] |
Liao Y, Xiang J, Yuan L,
CrossRef
Pubmed
Google scholar
|
[20] |
Deng D R, Xue F, Jia Y J,
CrossRef
Pubmed
Google scholar
|
[21] |
Rasoulnezhad H, Hosseinzadeh G, Hosseinzadeh R,
CrossRef
Google scholar
|
[22] |
Zhao C L, Wu Y X, Liang H L,
CrossRef
Google scholar
|
[23] |
Shao H Y, Wang W K, Zhang H,
CrossRef
Google scholar
|
[24] |
Zha C, Wu D, Zhang T,
CrossRef
Google scholar
|
[25] |
Seh Z W, Li W, Cha J J,
CrossRef
Pubmed
Google scholar
|
[26] |
Pang Q, Liang X, Kwok C Y,
CrossRef
Google scholar
|
[27] |
Zhao Y, Zhu W, Chen G Z,
CrossRef
Google scholar
|
[28] |
Su J, Zhu L, Geng P,
CrossRef
Pubmed
Google scholar
|
[29] |
Zhang Y H, Yang Y N, Xiao P,
CrossRef
Google scholar
|
[30] |
Liang Z, Zheng G, Li W,
CrossRef
Pubmed
Google scholar
|
[31] |
Perdew J P, Ruzsinszky A, Csonka G I,
CrossRef
Pubmed
Google scholar
|
[32] |
Lim J H, Choi J. Titanium oxide nanowires originating from anodically grown nanotubes: the bamboo-splitting model. Small, 2007, 3(9): 1504–1507
CrossRef
Pubmed
Google scholar
|
[33] |
Wang H Z, Kou X L, Zhang L,
CrossRef
Google scholar
|
[34] |
Ni J, Fu S, Wu C,
CrossRef
Pubmed
Google scholar
|
[35] |
Li C C, Liu X B, Zhu L,
CrossRef
Google scholar
|
[36] |
Li Y M, Han X, Yi T F,
CrossRef
Google scholar
|
[37] |
Wang L P, Zhang J Y, Gao Y,
CrossRef
Google scholar
|
[38] |
Liu Y T, Han D D, Wang L,
CrossRef
Google scholar
|
[39] |
Shang X N, Qin T F, Guo P Q,
CrossRef
Google scholar
|
[40] |
Xu R, Lu J, Amine K. Progress in mechanistic understanding and characterization techniques of Li–S batteries. Advanced Energy Materials, 2015, 5(16): 1500408
CrossRef
Google scholar
|
[41] |
Liao J Y, Higgins D, Lui G,
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |