Graphene-induced enhanced anticorrosion performance of waterborne epoxy resin coating

Huan-Yan XU, Dan LU, Xu HAN

PDF(1075 KB)
PDF(1075 KB)
Front. Mater. Sci. ›› 2020, Vol. 14 ›› Issue (2) : 211-220. DOI: 10.1007/s11706-020-0507-7
RESEARCH ARTICLE

Graphene-induced enhanced anticorrosion performance of waterborne epoxy resin coating

Author information +
History +

Abstract

In this work, waterborne epoxy resin E44 and graphene were employed as the matrix and nanofiller, respectively, to construct composite coatings with enhanced anticorrosion performance. XRD pattern and TEM observation indicated that the obtained graphene had a stacked structure of few-layer graphitic sheets with numbers of wrinkles. SEM observations revealed that no defects or microcracks existed on the surface of graphene/epoxy coatings and the internal micropores and microcracks were filled by graphene. FTIR spectra displayed that all the characteristic absorption peaks were attributed to the epoxy resin cured with polyamide. The Tafel polarization curves showed that, as the graphene addition amount increased, the corrosive potential increased and the corrosive current decreased. ESI results proved that the addition of graphene into epoxy coatings could not only increase the impedance arc in Nyquist plots, but also increase the impedance modulus at low frequency. Finally, the enhanced anticorrosion mechanism was proposed and discussed.

Keywords

graphene / waterborne epoxy / anticorrosion / electrochemical property

Cite this article

Download citation ▾
Huan-Yan XU, Dan LU, Xu HAN. Graphene-induced enhanced anticorrosion performance of waterborne epoxy resin coating. Front. Mater. Sci., 2020, 14(2): 211‒220 https://doi.org/10.1007/s11706-020-0507-7

References

[1]
Huang H W, Li M L, Tian Y Q, . Exfoliation and functionalization of α-zirconium phosphate in one pot for waterborne epoxy coatings with enhanced anticorrosion performance. Progress in Organic Coatings, 2020, 138: 105390 doi:10.1016/j.porgcoat.2019.105390
[2]
Sheng X X, Mo R B, Ma Y, . Waterborne epoxy resin/polydopamine modified zirconium phosphate nanocomposite for anticorrosive coating. Industrial & Engineering Chemistry Research, 2019, 58(36): 16571–16580 doi:10.1021/acs.iecr.9b02557
[3]
Irfan M, Bhat S I, Ahmad S. Reduced graphene oxide reinforced waterborne soy alkyd nanocomposites: formulation, characterization, and corrosion inhibition analysis. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 14820–14830 doi:10.1021/acssuschemeng.8b03349
[4]
Ding J, Zhao H, Shao Z, . Bioinspired smart anticorrosive coatings with an emergency-response closing function. ACS Applied Materials & Interfaces, 2019, 11(45): 42646–42653 doi:10.1021/acsami.9b15706 PMID:31647634
[5]
Luo X, Zhong J, Zhou Q, . Cationic reduced graphene oxide as self-aligned nanofiller in the epoxy nanocomposite coating with excellent anticorrosive performance and its high antibacterial activity. ACS Applied Materials & Interfaces, 2018, 10(21): 18400–18415 doi:10.1021/acsami.8b01982 PMID:29727162
[6]
Wen J G, Geng W, Geng H Z, . Improvement of corrosion resistance of waterborne polyurethane coatings by covalent and noncovalent grafted graphene oxide nanosheets. ACS Omega, 2019, 4(23): 20265–20274 doi:10.1021/acsomega.9b02687 PMID:31815229
[7]
Sun M, Ma Z D, Li A H, . Anticorrosive performance of polyaniline/waterborne epoxy/poly (methylhydrosiloxane) composite coatings. Progress in Organic Coatings, 2020, 139: 105462 doi:10.1016/j.porgcoat.2019.105462
[8]
Shen L, Li Y, Zhao W J, . Corrosion protection of graphene-modified zinc-rich epoxy coatings in dilute NaCl solution. ACS Applied Nano Materials, 2019, 2(1): 180–190 doi:10.1021/acsanm.8b01821
[9]
Balakrishnan T, Sathiyanarayanan S, Mayavan S. Advanced anticorrosion coating materials derived from sunflower oil with bifunctional properties. ACS Applied Materials & Interfaces, 2015, 7(35): 19781–19788 doi:10.1021/acsami.5b05789 PMID:26292971
[10]
Liu A, Tian H W, Ju X D, . In-situ growth of layered double hydroxides nanosheet arrays on graphite fiber as highly dispersed nanofillers for polymer coating with excellent anticorrosion performances. Journal of the Taiwan Institute of Chemical Engineers, 2019, 104: 330–340 doi:10.1016/j.jtice.2019.09.006
[11]
Sørensen P A, Kiil S, Dam-Johansen K, . Anticorrosive coatings: a review. Journal of Coatings Technology and Research, 2009, 6(2): 135–176 doi:10.1007/s11998-008-9144-2
[12]
Tian Z F, Yu H J, Wang L, . Recent progress in the preparation of polyaniline nanostructures and their applications in anticorrosive coatings. RSC Advances, 2014, 4(54): 28195–28208 doi:10.1039/c4ra03146f
[13]
Yin H, Wan Y, Zhou J, . Self-emulsified waterborne epoxy hardener without acid neutralizers and its emulsifying and curing properties. Pigment & Resin Technology, 2019, 48(3): 223–228 doi:10.1108/PRT-06-2017-0058
[14]
Wu G M, Liu D, Liu G F, . Thermoset nanocomposites from waterborne bio-based epoxy resin and cellulose nanowhiskers. Carbohydrate Polymers, 2015, 127: 229–235 doi:10.1016/j.carbpol.2015.03.078 PMID:25965479
[15]
Ni Y, Chen L, Teng K, . Superior mechanical properties of epoxy composites reinforced by 3D interconnected graphene skeleton. ACS Applied Materials & Interfaces, 2015, 7(21): 11583–11591 doi:10.1021/acsami.5b02552 PMID:25948414
[16]
Bento J L, Brown E, Woltornist S J, . Thermal and electrical properties of nanocomposites based on self-assembled pristine graphene. Advanced Functional Materials, 2017, 27(1): 1604277 doi:10.1002/adfm.201604277
[17]
Allen M J, Tung V C, Kaner R B. Honeycomb carbon: a review of graphene. Chemical Reviews, 2010, 110(1): 132–145 doi:10.1021/cr900070d PMID:19610631
[18]
Zhang Y, Zhang L, Zhou C. Review of chemical vapor deposition of graphene and related applications. Accounts of Chemical Research, 2013, 46(10): 2329–2339 doi:10.1021/ar300203n PMID:23480816
[19]
Pinto A M, Gonçalves I C, Magalhães F D. Graphene-based materials biocompatibility: A review. Colloids and Surfaces B: Biointerfaces, 2013, 111: 188–202 doi:10.1016/j.colsurfb.2013.05.022 PMID:23810824
[20]
Kucinskis G, Bajars G, Kleperis J. Graphene in lithium ion battery cathode materials: A review. Journal of Power Sources, 2013, 240: 66–79 doi:10.1016/j.jpowsour.2013.03.160
[21]
Rafiee M A, Rafiee J, Wang Z, . Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano, 2009, 3(12): 3884–3890 doi:10.1021/nn9010472 PMID:19957928
[22]
Chang C H, Huang T C, Peng C W, . Novel anticorrosion coatings prepared from polyaniline/graphene composites. Carbon, 2012, 50(14): 5044–5051 doi:10.1016/j.carbon.2012.06.043
[23]
Li Y, Yang Z, Qiu H, . Self-aligned graphene as anticorrosive barrier in waterborne polyurethane composite coatings. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(34): 14139–14145 doi:10.1039/c4ta02262a
[24]
Yu Z, Di H, Ma Y, . Fabrication of graphene oxide-alumina hybrids to reinforce the anti-corrosion performance of composite epoxy coatings. Applied Surface Science, 2015, 351: 986–996 doi:10.1016/j.apsusc.2015.06.026
[25]
Zhu G, Cui X, Zhang Y, . Poly (vinyl butyral)/graphene oxide/poly (methylhydrosiloxane) nanocomposite coating for improved aluminum alloy anticorrosion. Polymer, 2019, 172: 415–422 doi:10.1016/j.polymer.2019.03.056
[26]
Cui G, Bi Z X, Zhang R Y, . A comprehensive review on graphene-based anti-corrosive coatings. Chemical Engineering Journal, 2019, 373: 104–121 doi:10.1016/j.cej.2019.05.034
[27]
Parhizkar N, Shahrabi T, Ramezanzadeh B. Steel surface pre-treated by an advance and eco-friendly cerium oxide nanofilm modified by graphene oxide nanosheets; electrochemical and adhesion measurements. Journal of Alloys and Compounds, 2018, 747: 109–123 doi:10.1016/j.jallcom.2018.03.022
[28]
Parhizkar N, Shahrabi T, Ramezanzadeh B. Synthesis and characterization of a unique isocyanate silane reduced graphene oxide nanosheets; screening the role of multifunctional nanosheets on the adhesion and corrosion protection performance of an amido-amine cured epoxy composite. Journal of the Taiwan Institute of Chemical Engineers, 2018, 82: 281–299 doi:10.1016/j.jtice.2017.10.033
[29]
Xiong Z, Zhang L L, Ma J, . Photocatalytic degradation of dyes over graphene–gold nanocomposites under visible light irradiation. Chemical Communications, 2010, 46(33): 6099–6101 doi:10.1039/c0cc01259a PMID:20661492
[30]
Xu H Y, Li B, Han X, . Synergic enhancement of the anticorrosion properties of an epoxy coating by compositing with both graphene and halloysite nanotubes. Journal of Applied Polymer Science, 2019, 136(21): 47562 doi:10.1002/app.47562
[31]
Sun G, Li X, Qu Y, . Preparation and characterization of graphite nanosheets from detonation technique. Materials Letters, 2008, 62(4–5): 703–706 doi:10.1016/j.matlet.2007.06.035
[32]
Dikin D A, Stankovich S, Zimney E J, . Preparation and characterization of graphene oxide paper. Nature, 2007, 448(7152): 457–460 doi:10.1038/nature06016 PMID:17653188
[33]
Cao H, Wu X, Yin G, . Synthesis of adenine-modified reduced graphene oxide nanosheets. Inorganic Chemistry, 2012, 51(5): 2954–2960 doi:10.1021/ic2022402 PMID:22356685
[34]
Siva T, Kamaraj K, Sathiyanarayanan S. Epoxy curing by polyaniline (PANI) — Characterization and self-healing evaluation. Progress in Organic Coatings, 2014, 77(6): 1095–1103 doi:10.1016/j.porgcoat.2014.03.019
[35]
Dang Z M, Zhang B, Li J, . Copper particles/epoxy resin thermosetting conductive adhesive using polyamide resin as curing agent. Journal of Applied Polymer Science, 2012, 126(3): 815–821 doi:10.1002/app.36951
[36]
Balgude D, Sabnis A, Ghosh S K. Synthesis and characterization of cardanol based reactive polyamide for epoxy coating application. Progress in Organic Coatings, 2017, 104: 250–262 doi:10.1016/j.porgcoat.2016.11.012
[37]
Navarchian A H, Joulazadeh M, Karimi F. Investigation of corrosion protection performance of epoxy coatings modified by polyaniline/clay nanocomposites on steel surfaces. Progress in Organic Coatings, 2014, 77(2): 347–353 doi:10.1016/j.porgcoat.2013.10.008
[38]
Chen J, Lu H Y, Chen Y, . Stable aqueous dispersion of polymer functionalized graphene sheets from electrochemical exfoliation for anticorrosion application. Colloid & Polymer Science, 2017, 295(10): 1951–1959 doi:10.1007/s00396-017-4173-y
[39]
Njoku D I, Cui M, Xiao H, . Understanding the anticorrosive protective mechanisms of modified epoxy coatings with improved barrier, active and self-healing functionalities: EIS and spectroscopic techniques. Scientific Reports, 2017, 7: 15597 doi:10.1038/s41598-017-15845-0 PMID:29142312
[40]
Jeong Y G, An J E. Microstructure and electrical property of epoxy/graphene/MWCNT hybrid composite films manufactured by UV-curing. Macromolecular Research, 2014, 22(10): 1059–1065 doi:10.1007/s13233-014-2157-z
[41]
Prasai D, Tuberquia J C, Harl R R, . Graphene: corrosion-inhibiting coating. ACS Nano, 2012, 6(2): 1102–1108 doi:10.1021/nn203507y PMID:22299572

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(1075 KB)

Accesses

Citations

Detail

Sections
Recommended

/