Fabrication of Cu/graphite film/Cu sandwich composites with ultrahigh thermal conductivity for thermal management applications

Rui ZHAO, Weikai LI, Tian WANG, Ke ZHAN, Zheng YANG, Ya YAN, Bin ZHAO, Junhe YANG

PDF(2763 KB)
PDF(2763 KB)
Front. Mater. Sci. ›› 2020, Vol. 14 ›› Issue (2) : 188-197. DOI: 10.1007/s11706-020-0503-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Fabrication of Cu/graphite film/Cu sandwich composites with ultrahigh thermal conductivity for thermal management applications

Author information +
History +

Abstract

Effective thermal management of electronic integrated devices with high powder density has become a serious issue, which requires materials with high thermal conductivity (TC). In order to solve the problem of weak bonding between graphite and Cu, a novel Cu/graphite film/Cu sandwich composite (Cu/GF/Cu composite) with ultrahigh TC was fabricated by electro-deposition. The micro-riveting structure was introduced to enhance the bonding strength between graphite film and deposited Cu layers by preparing a rectangular array of micro-holes on the graphite film before electro-deposition. TC and mechanical properties of the composites with different graphite volume fractions and current densities were investigated. The results showed that the TC enhancement generated by the micro-riveting structure for Cu/GF/Cu composites at low graphite content was more effective than that at high graphite content, and the strong texture orientation of deposited Cu resulted in high TC. Under the optimizing preparing condition, the highest in-plane TC reached 824.3 W·m−1·K−1, while the ultimate tensile strength of this composite was about four times higher than that of the graphite film.

Keywords

metal matrix composites / electro-deposition / micro-riveting / thermal conductivity / graphite film

Cite this article

Download citation ▾
Rui ZHAO, Weikai LI, Tian WANG, Ke ZHAN, Zheng YANG, Ya YAN, Bin ZHAO, Junhe YANG. Fabrication of Cu/graphite film/Cu sandwich composites with ultrahigh thermal conductivity for thermal management applications. Front. Mater. Sci., 2020, 14(2): 188‒197 https://doi.org/10.1007/s11706-020-0503-y

References

[1]
Yang W, Zhou L, Peng K, . Effect of tungsten addition on thermal conductivity of graphite/copper composites. Composites Part B: Engineering, 2013, 55: 1–4 doi:10.1016/j.compositesb.2013.05.023
[2]
Bai H, Ma N, Lang J, . Thermal conductivity of Cu/diamond composites prepared by a new pretreatment of diamond powder. Composites Part B: Engineering, 2013, 52: 182–186 doi:10.1016/j.compositesb.2013.04.017
[3]
Tao P, Shang W, Song C, . Bioinspired engineering of thermal materials. Advanced Materials, 2015, 27(3): 428–463 doi:10.1002/adma.201401449 PMID:25270292
[4]
Zhou C, Huang W, Chen Z, . In-plane thermal enhancement behaviors of Al matrix composites with oriented graphite flake alignment. Composites Part B: Engineering, 2015, 70: 256–262 doi:10.1016/j.compositesb.2014.11.018
[5]
Xin G, Sun H, Hu T, . Large-area freestanding graphene paper for superior thermal management. Advanced Materials, 2014, 26(26): 4521–4526 doi:10.1002/adma.201400951 PMID:24817208
[6]
Ma Z K, Shi J L, Song Y, . Carbon with high thermal conductivity, prepared from ribbon-shaped mesosphase pitch-based fibers. Carbon, 2006, 44(7): 1298–1301 doi:10.1016/j.carbon.2006.01.015
[7]
Jiang B, Wang H, Wen G, . Copper–graphite–copper sandwich: superior heat spreader with excellent heat-dissipation ability and good weldability. RSC Advances, 2016, 6(30): 25128–25136 doi:10.1039/c6ra00057f
[8]
Tan Z, Li Z, Fan G, . Enhanced thermal conductivity in diamond/aluminum composites with a tungsten interface nanolayer. Materials & Design, 2013, 47: 160–166 doi:10.1016/j.matdes.2012.11.061
[9]
Mizuuchi K, Inoue K, Agari Y, . Processing of diamond particle dispersed aluminum matrix composites in continuous solid–liquid co-existent state by SPS and their thermal properties. Composites Part B: Engineering, 2011, 42(4): 825–831 doi:10.1016/j.compositesb.2011.01.012
[10]
Prieto R, Molina J M, Narciso J, . Fabrication and properties of graphite flakes/metal composites for thermal management applications. Scripta Materialia, 2008, 59(1): 11–14 doi:10.1016/j.scriptamat.2008.02.026
[11]
Chen J K, Huang I S. Thermal properties of aluminum–graphite composites by powder metallurgy. Composites Part B: Engineering, 2013, 44(1): 698–703 doi:10.1016/j.compositesb.2012.01.083
[12]
Prieto R, Molina J M, Narciso J, . Thermal conductivity of graphite flakes–SiC particles/metal composites. Composites Part A: Applied Science and Manufacturing, 2011, 42(12): 1970–1977 doi:10.1016/j.compositesa.2011.08.022
[13]
Zhou C, Ji G, Chen Z, . Fabrication, interface characterization and modeling of oriented graphite flakes/Si/Al composites for thermal management applications. Materials & Design, 2014, 63: 719–728 doi:10.1016/j.matdes.2014.07.009
[14]
Huang Y, Ouyang Q, Guo Q, . Graphite film/aluminum laminate composites with ultrahigh thermal conductivity for thermal management applications. Materials & Design, 2016, 90(59): 508–515 doi:10.1016/j.matdes.2015.10.146
[15]
Sun W, Zhan K, Yang Z, . Facile fabrication of GO/Al composites with improved dispersion of graphene and enhanced mechanical properties by Cu doping and powder metallurgy. Journal of Alloys and Compounds, 2020, 815: 152465 doi:10.1016/j.jallcom.2019.152465
[16]
Inagaki M, Kaburagi Y, Hishiyama Y. Thermal man agement material: graphite. Advanced Engineering Materials, 2014, 16(5): 494–506 doi:10.1002/adem.201300418
[17]
Inagaki M, Ohta N, Hishiyama Y. Aromatic polyimides as carbon precursors. Carbon, 2013, 61: 1–21 doi:10.1016/j.carbon.2013.05.035
[18]
Huang Y, Su Y, Li S, . Fabrication of graphite film/aluminum composites by vacuum hot pressing: Process optimization and thermal conductivity. Composites Part B: Engineering, 2016, 107: 43–50 doi:10.1016/j.compositesb.2016.09.051
[19]
Kurita H, Miyazaki T, Kawasaki A, . Interfacial microstructure of graphite flake reinforced aluminum matrix composites fabricated via hot pressing. Composites Part A: Applied Science and Manufacturing, 2015, 73: 125–131 doi:10.1016/j.compositesa.2015.03.013
[20]
Li W, Liu Y, Wu G. Preparation of graphite flakes/Al with preferred orientation and high thermal conductivity by squeeze casting. Carbon, 2015, 95: 545–551 doi:10.1016/j.carbon.2015.08.063
[21]
Huang Y, Li X, Wang Y, . Endoplasmic reticulum stress-induced hepatic stellate cell apoptosis through calcium-mediated JNK/P38 MAPK and Calpain/Caspase-12 pathways. Molecular and Cellular Biochemistry, 2014, 394(1–2): 1–12 doi:10.1007/s11010-014-2073-8 PMID:24961950
[22]
Abyzov A M, Kidalov S V, Shakhov F M. High thermal conductivity composite of diamond particles with tungsten coating in a copper matrix for heat sink application. Applied Thermal Engineering, 2012, 48: 72–80 doi:10.1016/j.applthermaleng.2012.04.063
[23]
Chen J, Ren S, He X, . Properties and microstructure of nickel-coated graphite flakes/copper composites fabricated by spark plasma sintering. Carbon, 2017, 121: 25–34 doi:10.1016/j.carbon.2017.05.082
[24]
Tao Z, Guo Q, Gao X, . The wettability and interface thermal resistance of copper/graphite system with an addition of chromium. Materials Chemistry and Physics, 2011, 128(1–2): 228–232 doi:10.1016/j.matchemphys.2011.03.003
[25]
Guo S J, Yang Q S, He X Q, . Modeling of interface cracking in copper–graphite composites by MD and CFE method. Composites Part B: Engineering, 2014, 58: 586–592 doi:10.1016/j.compositesb.2013.10.042
[26]
Weber L, Tavangar R. Diamond-based metal matrix composites for thermal management made by liquid metal infiltration — potential and limits. Advanced Materials Research, 2009, 59: 111–115 doi:10.4028/www.scientific.net/AMR.59.111
[27]
Yuan G, Li X, Dong Z, . Graphite blocks with preferred orientation and high thermal conductivity. Carbon, 2012, 50(1): 175–182 doi:10.1016/j.carbon.2011.08.017
[28]
Chang J, Zhang Q, Lin Y, . Layer by layer graphite film reinforced aluminum composites with an enhanced performance of thermal conduction in the thermal management applications. Journal of Alloys and Compounds, 2018, 742: 601–609 doi:10.1016/j.jallcom.2018.01.332
[29]
Chen H, Wei H, Chen M, . Enhancing the effectiveness of silicone thermal grease by the addition of functionalized carbon nanotubes. Applied Surface Science, 2013, 283(2): 525–531 doi:10.1016/j.apsusc.2013.06.139
[30]
Liang J L, Li H, Li Y G. Electro-deposition method’s influence to ferrosilicon organization. Advanced Materials Research, 2013, 712–715: 50–53 doi:10.4028/www.scientific.net/AMR.712-715.50
[31]
Moore A L, Shi L. Emerging challenges and materials for thermal management of electronics. Materials Today, 2014, 17(4): 163–174 doi:10.1016/j.mattod.2014.04.003
[32]
Yuan J, Zhang K, Li T, . Anisotropy of thermal conductivity and mechanical properties in Mg–5Zn–1Mn alloy. Materials & Design, 2012, 40: 257–261 doi:10.1016/j.matdes.2012.03.046
[33]
Zhan K, Wu Y, Li J, . Investigation on surface layer characteristics of shot peened graphene reinforced Al composite by X-ray diffraction method. Applied Surface Science, 2018, 435: 1257–1264 doi:10.1016/j.apsusc.2017.11.242
[34]
Wolter S D, Borca-Tasciuc D A, Chen G, . Thermal conductivity of epitaxially textured diamond films. Diamond and Related Materials, 2003, 12(1): 61–64 doi:10.1016/S0925-9635(02)00248-0
[35]
Boden A, Boerner B, Kusch P, . Nanoplatelet size to control the alignment and thermal conductivity in copper–graphite composites. Nano Letters, 2014, 14(6): 3640–3644 doi:10.1021/nl501411g PMID:24839860
[36]
Firkowska I, Boden A, Boemer B, . The origin of high thermal conductivity and ultralow thermal expansion in copper–graphite composites. Nano Letters, 2015, 15(7): 4745–4751 doi:10.1021/acs.nanolett.5b01664 PMID:26083322
[37]
Liu Q, He X B, Ren S B, . Thermophysical properties and microstructure of graphite flake/copper composites processed by electroless copper coating. Journal of Alloys and Compounds, 2014, 587: 255–259 doi:10.1016/j.jallcom.2013.09.207
[38]
Jagannadham K. Volume fraction of graphene platelets in copper–graphene composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 44(1): 552–559 doi:10.1007/s11661-012-1387-y
[39]
Chu K, Wang X H, Wang F, . Largely enhanced thermal conductivity of graphene/copper composites with highly aligned graphene network. Carbon, 2018, 127: 102–112 doi:10.1016/j.carbon.2017.10.099

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51605293 and 51702213) and the Shanghai Science and Technology Commission (18060502300).

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(2763 KB)

Accesses

Citations

Detail

Sections
Recommended

/