Facile synthesis of asymmetric patchy Janus Ag/Cu particles and study of their antifungal activity

Sudipta BISWAS, Satadru PRAMANIK, Suman MANDAL, Sudeshna SARKAR, Sujata CHAUDHURI, Swati DE

PDF(2651 KB)
PDF(2651 KB)
Front. Mater. Sci. ›› 2020, Vol. 14 ›› Issue (1) : 24-32. DOI: 10.1007/s11706-020-0496-6
RESEARCH ARTICLE

Facile synthesis of asymmetric patchy Janus Ag/Cu particles and study of their antifungal activity

Author information +
History +

Abstract

Asymmetric patchy Ag/Cu Janus nanoparticles (NPs) were synthesized via a “seed-mediated” approach. This is the first report of synthesis of nanometer sized metal-based Janus NPs without using complicated methods. Selective adsorption of the surfactant onto the seed NPs leads to the formation of Janus type structure. Subsequently the reduction potential of Ag+/Ag0 and Cu2+/Cu0 systems directs the formation of the “patch”. The patchy Janus NPs show significant antifungal activity towards a potent rice pathogen thus offering the prospect of future application in crop protection.

Keywords

patchy Janus nanoparticle / seed mediated method / CTAB / antifungal activity

Cite this article

Download citation ▾
Sudipta BISWAS, Satadru PRAMANIK, Suman MANDAL, Sudeshna SARKAR, Sujata CHAUDHURI, Swati DE. Facile synthesis of asymmetric patchy Janus Ag/Cu particles and study of their antifungal activity. Front. Mater. Sci., 2020, 14(1): 24‒32 https://doi.org/10.1007/s11706-020-0496-6

References

[1]
Hodak J H, Henglein A, Giersig M, . Laser-induced inter-diffusion in AuAg core‒shell nanoparticles. The Journal of Physical Chemistry B, 2000, 104(49): 11708–11718
CrossRef Google scholar
[2]
Fan F R, Liu D Y, Wu Y F, . Epitaxial growth of heterogeneous metal nanocrystals: from gold nano-octahedra to palladium and silver nanocubes. Journal of the American Chemical Society, 2008, 130(22): 6949–6951
CrossRef Pubmed Google scholar
[3]
Zhang H T, Ding J, Chow G M, . Engineering magnetic properties of Ni nanoparticles by non-magnetic cores. Chemistry of Materials, 2009, 21(21): 5222–5228
CrossRef Google scholar
[4]
Tsuji M, Miyamae N, Lim S, . Crystal structures and growth mechanisms of Au@Ag core‒shell nanoparticles prepared by the microwave-polyol method. Crystal Growth & Design, 2006, 6(8): 1801–1807
CrossRef Google scholar
[5]
Costi R, Saunders A E, Banin U. Colloidal hybrid nanostructures: a new type of functional materials. Angewandte Chemie International Edition, 2010, 49(29): 4878–4897
CrossRef Pubmed Google scholar
[6]
Cozzoli P D, Pellegrino T, Manna L. Synthesis, properties and perspectives of hybrid nanocrystal structures. Chemical Society Reviews, 2006, 35(11): 1195–1208
CrossRef Pubmed Google scholar
[7]
Wang C, Xu C, Zeng H, . Recent progress in syntheses and applications of dumbbell-like nanoparticles. Advanced Materials, 2009, 21(30): 3045–3052
CrossRef Pubmed Google scholar
[8]
Poulos T L. The Janus nature of heme. Natural Product Reports, 2007, 24(3): 504–510
CrossRef Pubmed Google scholar
[9]
Szilvay G R, Paananen A, Laurikainen K, . Self-assembled hydrophobin protein films at the air–water interface: structural analysis and molecular engineering. Biochemistry, 2007, 46(9): 2345–2354
CrossRef Pubmed Google scholar
[10]
Whiteford J R, Spanu P D. Hydrophobins and the interactions between fungi and plants. Molecular Plant Pathology, 2002, 3(5): 391–400
CrossRef Pubmed Google scholar
[11]
Du J, O’Reilly R K. Anisotropic particles with patchy, multicompartment and Janus architectures: preparation and application. Chemical Society Reviews, 2011, 40(5): 2402–2416
CrossRef Pubmed Google scholar
[12]
Nisisako T, Torii T, Takahashi T, . Synthesis of monodisperse bicolored Janus particles with electrical anisotropy using a microfluidic co-flow system. Advanced Materials, 2006, 18(9): 1152–1156
CrossRef Google scholar
[13]
Walther A, Hoffmann M, Müller A H. Emulsion polymerization using Janus particles as stabilizers. Angewandte Chemie International Edition, 2008, 47(4): 711–714
CrossRef Pubmed Google scholar
[14]
Yoshida M, Lahann J. Smart nanomaterials. ACS Nano, 2008, 2(6): 1101–1107
CrossRef Pubmed Google scholar
[15]
McConnell M D, Kraeutler M J, Yang S, . Patchy and multiregion Janus particles with tunable optical properties. Nano Letters, 2010, 10(2): 603–609
CrossRef Pubmed Google scholar
[16]
Glotzer S C, Solomon M J. Anisotropy of building blocks and their assembly into complex structures. Nature Materials, 2007, 6(8): 557–562
CrossRef Pubmed Google scholar
[17]
Gegenbuker T, Krekhova M, Schobel J, . “Patchy” carbon nanotubes as efficient compatibilizers for polymer blends. ACS Macro Letters, 2016, 5(3): 306–310
CrossRef Google scholar
[18]
Li S, Zhang L, Chen X, . Selective growth synthesis of ternary Janus nanoparticles for imaging-guided synergistic chemo- and photothermal therapy in the second NIR window. ACS Applied Materials & Interfaces, 2018, 10(28): 24137–24148
CrossRef Pubmed Google scholar
[19]
Walther A, Müller A H E. Janus particles: synthesis, self-assembly, physical properties, and applications. Chemical Reviews, 2013, 113(7): 5194–5261
CrossRef Pubmed Google scholar
[20]
Carbone L, Cozzoli P D. Colloidal heterostructured nanocrystals: synthesis and growth mechanisms. Nano Today, 2010, 5(5): 449–493
CrossRef Google scholar
[21]
Choi J, Zhao Y, Zhang D, . Patterned fluorescent particles as nanoprobes for the investigation of molecular interactions. Nano Letters, 2003, 3(8): 995–1000
CrossRef Google scholar
[22]
Anker J N, Kopelman R. Magnetically modulated optical nanoprobes. Applied Physics Letters, 2003, 82(7): 1102–1104
CrossRef Google scholar
[23]
Hong L, Jiang S, Granick S. Simple method to produce Janus colloidal particles in large quantity. Langmuir, 2006, 22(23): 9495–9499
CrossRef Pubmed Google scholar
[24]
Koo H Y, Yi D K, Yoo S J, . A snowman-like array of colloidal dimers for antireflecting surfaces. Advanced Materials, 2004, 16(3): 274–277
CrossRef Google scholar
[25]
Roh K H, Martin D C, Lahann J. Biphasic Janus particles with nanoscale anisotropy. Nature Materials, 2005, 4(10): 759–763
CrossRef Pubmed Google scholar
[26]
Wurm F, König H M, Hilf S, . Janus micelles induced by olefin metathesis. Journal of the American Chemical Society, 2008, 130(18): 5876–5877
CrossRef Pubmed Google scholar
[27]
Zhang J, Wang X J, Wu D X, . Bioconjugated Janus particles prepared by in situ click chemistry. Chemistry of Materials, 2009, 21(17): 4012–4018
CrossRef Google scholar
[28]
de Gennes P G. Soft matter. Reviews of Modern Physics, 1992, 64(3): 645 doi:10.1103/RevModPhys.64.645
[29]
Reculusa S, Mingotaud C, Bourgeat-Lami E, . Synthesis of daisy-shaped and multipod-like silica/polystyrene nanocomposites. Nano Letters, 2004, 4(9): 1677‒1682 doi:10.1021/nl049161h
[30]
Wurm F, Kilbinger A F M. Polymeric Janus particles. Angewandte Chemie International Edition, 2009, 48(45): 8412–8421
CrossRef Pubmed Google scholar
[31]
Perro A, Reculusa S, Ravaine S, . Design and synthesis of Janus micro- and nanoparticle. Journal of Materials Chemistry, 2005, 15(35‒36): 3745–3760
CrossRef Google scholar
[32]
Lattuada M, Hatton T A. Synthesis, properties and applications of Janus nanoparticles. Nano Today, 2011, 6(3): 286–308
CrossRef Google scholar
[33]
Walther A, Müller A H E. Janus particles. Soft Matter, 2008, 4(4): 663–668
CrossRef Google scholar
[34]
Loget G, Kuhn A. Bulk synthesis of Janus objects and asymmetric patchy particles. Journal of Materials Chemistry, 2012, 22(31): 15457–15474
CrossRef Google scholar
[35]
Chen T, Chen G, Xing S, . Scalable routes to Janus Au‒SiO2 and ternary Ag‒Au‒SiO2 nanoparticles. Chemistry of Materials, 2010, 22(13): 3826–3828
CrossRef Google scholar
[36]
Sotiriou G A, Hirt A M, Lozach P Y, . Hybrid, silica-coated, Janus-like plasmonic-magnetic nanoparticles. Chemistry of Materials, 2011, 23(7): 1985–1992
CrossRef Pubmed Google scholar
[37]
Anderson N A. The genetics and pathology of Rhizoctonia solani. Annual Review of Phytopathology, 1982, 20(1): 329–347
CrossRef Google scholar
[38]
Vilgalys R, Cubeta M A. Molecular systematics and population biology of Rhizoctonia. Annual Review of Phytopathology, 1994, 32(1): 135–155
CrossRef Google scholar
[39]
Willocquet L, Elazegui F A, Castilla N, . Research priorities for rice pest management in tropical Asia: a simulation analysis of yield losses and management efficiencies. Phytopathology, 2004, 94(7): 672–682
CrossRef Pubmed Google scholar
[40]
Lee F N, Rush M C. Rice sheath blight: A major rice disease. Plant Disease, 1983, 67(7): 829–832
CrossRef Google scholar
[41]
Webster R K, Gunnell P S, eds. Compendium of Rice Disease. St. Paul, Minnesota: The American Phytopathological Society Press, 1992
[42]
Gangopadyay S, Chakrabarti N K. Sheath blight of rice. Review of Plant Pathology, 1982, 61: 451–460
[43]
De S, Mandal S. Surfactant-assisted shape control of copper nanostructures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 421: 72–83
CrossRef Google scholar
[44]
Mandal S, De S. Catalytic and fluorescence studies with copper nanoparticles synthesized in polysorbates of varying hydrophobicity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 467: 233–250
CrossRef Google scholar
[45]
Tsuji M, Hikino S, Tanabe R, . Syntheses of Ag/Cu alloy and Ag/Cu alloy core Cu shell nanoparticles using a polyol method. CrystEngComm, 2010, 12(11): 3900–3908
CrossRef Google scholar
[46]
Tsuji M, Hikino S, Tanabe R, . Synthesis of bicompartmental Ag/Cu nanoparticles using a two-step polyol process. Chemistry Letters, 2009, 38(8): 860–861
CrossRef Google scholar
[47]
Glaser N, Adams D J, Böker A, . Janus particles at liquid‒liquid interfaces. Langmuir, 2006, 22(12): 5227–5229
CrossRef Pubmed Google scholar
[48]
Howse J R, Jones R A L, Ryan A J, . Self-motile colloidal particles: from directed propulsion to random walk. Physical Review Letters, 2007, 99(4): 048102
CrossRef Pubmed Google scholar

Disclosure of potential conflicts of interests

The authors declare no potential conflicts of interests.

Acknowledgements

S. De thanks Science and Engineering Research Board, Govt. of India, New Delhi for generous grant of the research project (File no. EMR/2014/000435) and University of Kalyani for infrastructural support. S. Sarkar acknowledges DST, India for the financial support provided through an INSPIRE Fellowship (IF160188). The authors thank Dr. A. Gayen, Dept. of Chemistry, Jadavpur University for help with the powder XRD measurements. Prof. T. K. Basu, Dept. of biochemistry, University of Kalyani is acknowledged for letting us use the DLS facility. CRF, IIT Kharagpur and Bose Institute, Kolkata are acknowledged for the TEM and SEM measurements respectively.

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(2651 KB)

Accesses

Citations

Detail

Sections
Recommended

/