Facile synthesis of asymmetric patchy Janus Ag/Cu particles and study of their antifungal activity

Sudipta BISWAS , Satadru PRAMANIK , Suman MANDAL , Sudeshna SARKAR , Sujata CHAUDHURI , Swati DE

Front. Mater. Sci. ›› 2020, Vol. 14 ›› Issue (1) : 24 -32.

PDF (2651KB)
Front. Mater. Sci. ›› 2020, Vol. 14 ›› Issue (1) : 24 -32. DOI: 10.1007/s11706-020-0496-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Facile synthesis of asymmetric patchy Janus Ag/Cu particles and study of their antifungal activity

Author information +
History +
PDF (2651KB)

Abstract

Asymmetric patchy Ag/Cu Janus nanoparticles (NPs) were synthesized via a “seed-mediated” approach. This is the first report of synthesis of nanometer sized metal-based Janus NPs without using complicated methods. Selective adsorption of the surfactant onto the seed NPs leads to the formation of Janus type structure. Subsequently the reduction potential of Ag+/Ag0 and Cu2+/Cu0 systems directs the formation of the “patch”. The patchy Janus NPs show significant antifungal activity towards a potent rice pathogen thus offering the prospect of future application in crop protection.

Keywords

patchy Janus nanoparticle / seed mediated method / CTAB / antifungal activity

Cite this article

Download citation ▾
Sudipta BISWAS, Satadru PRAMANIK, Suman MANDAL, Sudeshna SARKAR, Sujata CHAUDHURI, Swati DE. Facile synthesis of asymmetric patchy Janus Ag/Cu particles and study of their antifungal activity. Front. Mater. Sci., 2020, 14(1): 24-32 DOI:10.1007/s11706-020-0496-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hodak J H, Henglein A, Giersig M, . Laser-induced inter-diffusion in AuAg core‒shell nanoparticles. The Journal of Physical Chemistry B, 2000, 104(49): 11708–11718

[2]

Fan F R, Liu D Y, Wu Y F, . Epitaxial growth of heterogeneous metal nanocrystals: from gold nano-octahedra to palladium and silver nanocubes. Journal of the American Chemical Society, 2008, 130(22): 6949–6951

[3]

Zhang H T, Ding J, Chow G M, . Engineering magnetic properties of Ni nanoparticles by non-magnetic cores. Chemistry of Materials, 2009, 21(21): 5222–5228

[4]

Tsuji M, Miyamae N, Lim S, . Crystal structures and growth mechanisms of Au@Ag core‒shell nanoparticles prepared by the microwave-polyol method. Crystal Growth & Design, 2006, 6(8): 1801–1807

[5]

Costi R, Saunders A E, Banin U. Colloidal hybrid nanostructures: a new type of functional materials. Angewandte Chemie International Edition, 2010, 49(29): 4878–4897

[6]

Cozzoli P D, Pellegrino T, Manna L. Synthesis, properties and perspectives of hybrid nanocrystal structures. Chemical Society Reviews, 2006, 35(11): 1195–1208

[7]

Wang C, Xu C, Zeng H, . Recent progress in syntheses and applications of dumbbell-like nanoparticles. Advanced Materials, 2009, 21(30): 3045–3052

[8]

Poulos T L. The Janus nature of heme. Natural Product Reports, 2007, 24(3): 504–510

[9]

Szilvay G R, Paananen A, Laurikainen K, . Self-assembled hydrophobin protein films at the air–water interface: structural analysis and molecular engineering. Biochemistry, 2007, 46(9): 2345–2354

[10]

Whiteford J R, Spanu P D. Hydrophobins and the interactions between fungi and plants. Molecular Plant Pathology, 2002, 3(5): 391–400

[11]

Du J, O’Reilly R K. Anisotropic particles with patchy, multicompartment and Janus architectures: preparation and application. Chemical Society Reviews, 2011, 40(5): 2402–2416

[12]

Nisisako T, Torii T, Takahashi T, . Synthesis of monodisperse bicolored Janus particles with electrical anisotropy using a microfluidic co-flow system. Advanced Materials, 2006, 18(9): 1152–1156

[13]

Walther A, Hoffmann M, Müller A H. Emulsion polymerization using Janus particles as stabilizers. Angewandte Chemie International Edition, 2008, 47(4): 711–714

[14]

Yoshida M, Lahann J. Smart nanomaterials. ACS Nano, 2008, 2(6): 1101–1107

[15]

McConnell M D, Kraeutler M J, Yang S, . Patchy and multiregion Janus particles with tunable optical properties. Nano Letters, 2010, 10(2): 603–609

[16]

Glotzer S C, Solomon M J. Anisotropy of building blocks and their assembly into complex structures. Nature Materials, 2007, 6(8): 557–562

[17]

Gegenbuker T, Krekhova M, Schobel J, . “Patchy” carbon nanotubes as efficient compatibilizers for polymer blends. ACS Macro Letters, 2016, 5(3): 306–310

[18]

Li S, Zhang L, Chen X, . Selective growth synthesis of ternary Janus nanoparticles for imaging-guided synergistic chemo- and photothermal therapy in the second NIR window. ACS Applied Materials & Interfaces, 2018, 10(28): 24137–24148

[19]

Walther A, Müller A H E. Janus particles: synthesis, self-assembly, physical properties, and applications. Chemical Reviews, 2013, 113(7): 5194–5261

[20]

Carbone L, Cozzoli P D. Colloidal heterostructured nanocrystals: synthesis and growth mechanisms. Nano Today, 2010, 5(5): 449–493

[21]

Choi J, Zhao Y, Zhang D, . Patterned fluorescent particles as nanoprobes for the investigation of molecular interactions. Nano Letters, 2003, 3(8): 995–1000

[22]

Anker J N, Kopelman R. Magnetically modulated optical nanoprobes. Applied Physics Letters, 2003, 82(7): 1102–1104

[23]

Hong L, Jiang S, Granick S. Simple method to produce Janus colloidal particles in large quantity. Langmuir, 2006, 22(23): 9495–9499

[24]

Koo H Y, Yi D K, Yoo S J, . A snowman-like array of colloidal dimers for antireflecting surfaces. Advanced Materials, 2004, 16(3): 274–277

[25]

Roh K H, Martin D C, Lahann J. Biphasic Janus particles with nanoscale anisotropy. Nature Materials, 2005, 4(10): 759–763

[26]

Wurm F, König H M, Hilf S, . Janus micelles induced by olefin metathesis. Journal of the American Chemical Society, 2008, 130(18): 5876–5877

[27]

Zhang J, Wang X J, Wu D X, . Bioconjugated Janus particles prepared by in situ click chemistry. Chemistry of Materials, 2009, 21(17): 4012–4018

[28]

de Gennes P G. Soft matter. Reviews of Modern Physics, 1992, 64(3): 645 doi:10.1103/RevModPhys.64.645

[29]

Reculusa S, Mingotaud C, Bourgeat-Lami E, . Synthesis of daisy-shaped and multipod-like silica/polystyrene nanocomposites. Nano Letters, 2004, 4(9): 1677‒1682 doi:10.1021/nl049161h

[30]

Wurm F, Kilbinger A F M. Polymeric Janus particles. Angewandte Chemie International Edition, 2009, 48(45): 8412–8421

[31]

Perro A, Reculusa S, Ravaine S, . Design and synthesis of Janus micro- and nanoparticle. Journal of Materials Chemistry, 2005, 15(35‒36): 3745–3760

[32]

Lattuada M, Hatton T A. Synthesis, properties and applications of Janus nanoparticles. Nano Today, 2011, 6(3): 286–308

[33]

Walther A, Müller A H E. Janus particles. Soft Matter, 2008, 4(4): 663–668

[34]

Loget G, Kuhn A. Bulk synthesis of Janus objects and asymmetric patchy particles. Journal of Materials Chemistry, 2012, 22(31): 15457–15474

[35]

Chen T, Chen G, Xing S, . Scalable routes to Janus Au‒SiO2 and ternary Ag‒Au‒SiO2 nanoparticles. Chemistry of Materials, 2010, 22(13): 3826–3828

[36]

Sotiriou G A, Hirt A M, Lozach P Y, . Hybrid, silica-coated, Janus-like plasmonic-magnetic nanoparticles. Chemistry of Materials, 2011, 23(7): 1985–1992

[37]

Anderson N A. The genetics and pathology of Rhizoctonia solani. Annual Review of Phytopathology, 1982, 20(1): 329–347

[38]

Vilgalys R, Cubeta M A. Molecular systematics and population biology of Rhizoctonia. Annual Review of Phytopathology, 1994, 32(1): 135–155

[39]

Willocquet L, Elazegui F A, Castilla N, . Research priorities for rice pest management in tropical Asia: a simulation analysis of yield losses and management efficiencies. Phytopathology, 2004, 94(7): 672–682

[40]

Lee F N, Rush M C. Rice sheath blight: A major rice disease. Plant Disease, 1983, 67(7): 829–832

[41]

Webster R K, Gunnell P S, eds. Compendium of Rice Disease. St. Paul, Minnesota: The American Phytopathological Society Press, 1992

[42]

Gangopadyay S, Chakrabarti N K. Sheath blight of rice. Review of Plant Pathology, 1982, 61: 451–460

[43]

De S, Mandal S. Surfactant-assisted shape control of copper nanostructures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 421: 72–83

[44]

Mandal S, De S. Catalytic and fluorescence studies with copper nanoparticles synthesized in polysorbates of varying hydrophobicity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 467: 233–250

[45]

Tsuji M, Hikino S, Tanabe R, . Syntheses of Ag/Cu alloy and Ag/Cu alloy core Cu shell nanoparticles using a polyol method. CrystEngComm, 2010, 12(11): 3900–3908

[46]

Tsuji M, Hikino S, Tanabe R, . Synthesis of bicompartmental Ag/Cu nanoparticles using a two-step polyol process. Chemistry Letters, 2009, 38(8): 860–861

[47]

Glaser N, Adams D J, Böker A, . Janus particles at liquid‒liquid interfaces. Langmuir, 2006, 22(12): 5227–5229

[48]

Howse J R, Jones R A L, Ryan A J, . Self-motile colloidal particles: from directed propulsion to random walk. Physical Review Letters, 2007, 99(4): 048102

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (2651KB)

1543

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/