Ca2+ doping effects in (K, Na, Li)(Nb0.8Ta0.2)O3 lead-free piezoelectric ceramics

Lei TANG, Tengfei LIU, Jinxu MA, Xiaowen ZHANG, Linan AN, Kepi CHEN

PDF(1577 KB)
PDF(1577 KB)
Front. Mater. Sci. ›› 2019, Vol. 13 ›› Issue (4) : 431-438. DOI: 10.1007/s11706-019-0485-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Ca2+ doping effects in (K, Na, Li)(Nb0.8Ta0.2)O3 lead-free piezoelectric ceramics

Author information +
History +

Abstract

Lead-free (K0.5−x/2Na0.5−x/2Lix)(Nb0.8Ta0.2)O3 (KNLNT) and (K0.49−x/2Na0.49−x/2- LixCa0.01)(Nb0.8Ta0.2)O3 (KNLNT-Ca) ceramics were prepared by a conventional ceramic processing. Structural analysis shows that the Ca2+ doping takes the A site of ABO3 perovskite and decreases the phase transition temperature. Property measurements reveal that as a donor dopant, the Ca2+ doping results in higher room-temperature dielectric constant, lower dielectric loss, and lower mechanical quality factor. In addition, the Ca2+ doping does not change the positive piezoelectric coefficient d33, but increases the converse piezoelectric coefficient d33* significantly. This is likely due to the increase in the relaxation, as well as the appearance of (CaNa/K--VNa/K′) defect dipoles.

Keywords

lead-free piezoelectric / KNN / converse piezoelectric coefficient / donor dopant / piezoelectric property / polymorphic phase transition

Cite this article

Download citation ▾
Lei TANG, Tengfei LIU, Jinxu MA, Xiaowen ZHANG, Linan AN, Kepi CHEN. Ca2+ doping effects in (K, Na, Li)(Nb0.8Ta0.2)O3 lead-free piezoelectric ceramics. Front. Mater. Sci., 2019, 13(4): 431‒438 https://doi.org/10.1007/s11706-019-0485-9

References

[1]
Jaffe B, Cook W R, Jaffe H. Piezoelectric Ceramics. New York: Academic Press, 1971
[2]
Uchino K. Ferroelectric Devices. New York: CRC Press, 2009
[3]
Tichy J, Erhart J, Kittinger E, . Fundamentals of Piezoelectric Sensorics: Mechanical, Dielectric, and Thermodynamical Properties of Piezoelectric Materials. Berlin: Springer Press, 2010
[4]
Mishra M K, Moharana S, Behera B, . Surface functionalization of BiFeO3: a pathway for the enhancement of dielectric and electrical properties of poly(methyl methacrylate)–BiFeO3 composite films. Frontiers of Materials Science, 2017, 11(1): 82–91
CrossRef Google scholar
[5]
Saito Y, Takao H, Tani T, . Lead-free piezoceramics. Nature, 2004, 432(7013): 84–87
CrossRef Pubmed Google scholar
[6]
Shrout T R, Zhang S J. Lead-free piezoelectric ceramics: alternatives for PZT? Journal of Electroceramics, 2007, 19(1): 113–126
CrossRef Google scholar
[7]
Rodel J, Jo W, Seifert K T P, . Perspective on the development of lead-free piezoceramics. Journal of the American Ceramic Society, 2009, 92(6): 1153–1177
CrossRef Google scholar
[8]
Li J F, Wang K, Zhu F Y, . (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. Journal of the American Ceramic Society, 2013, 96(12): 3677–3696
CrossRef Google scholar
[9]
Rodel J, Webber K G, Dittmer R, . Transferring lead-free piezoelectric ceramics into application. Journal of the European Ceramic Society, 2015, 35(6): 1659–1681
CrossRef Google scholar
[10]
Tan Z, Xing J, Jiang L, . Ga2O3 doping and vacancy effect in KNN–LT lead-free piezoceramics. Frontiers of Materials Science, 2017, 11(4): 344–352
CrossRef Google scholar
[11]
Chen K, Jiao Y. Effects of Ge4+ acceptor dopant on sintering and electrical properties of (K0.5Na0.5)NbO3 lead-free piezoceramics. Frontiers of Materials Science, 2017, 11(1): 59–65
CrossRef Google scholar
[12]
Wu J, Xiao D, Zhu J. Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chemical Reviews, 2015, 115(7): 2559–2595
CrossRef Google scholar
[13]
Zhang S J, Lee H J, Ma C, . Sintering effect on microstructure and properties of (K, Na)NbO3 ceramics. Journal of the American Ceramic Society, 2011, 94(11): 3659–3665
CrossRef Google scholar
[14]
Guo Y P, Kakimoto K, Ohsato H. Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics. Applied Physics Letters, 2004, 85(18): 4121–4123
CrossRef Google scholar
[15]
Guo Y P, Kakimoto K i, Ohsato H. (Na0.5K0.5)NbO3–LiTaO3 lead-free piezoelectric ceramics. Materials Letters, 2005, 59(2–3): 241–244
CrossRef Google scholar
[16]
Dai Y, Zhang X, Zhou G. Phase transitional behavior in (Na0.5K0.5)NbO3–LiTaO3 ceramics. Applied Physics Letters, 2007, 90(26): 262903
CrossRef Google scholar
[17]
Zhang S, Xia R, Shrout T R. Modified (K0.5Na0.5)NbO3 based lead-free piezoelectrics with broad temperature usage range. Applied Physics Letters, 2007, 91(13): 132913
CrossRef Google scholar
[18]
Wu J G, Xiao D Q, Wang Y Y, . Improved temperature stability of CaTiO3-modified [(K0.5Na0.5)0.96Li0.04](Nb0.91Sb0.05Ta0.04)O3 lead-free piezoelectric ceramics. Journal of Applied Physics, 2008, 104(2): 024102
CrossRef Google scholar
[19]
Chang Y F, Poterala S, Yang Z P, . Enhanced electromechanical properties and temperature stability of textured (K0.5Na0.5)NbO3-based piezoelectric ceramics. Journal of the American Ceramic Society, 2011, 94(8): 2494–2498
CrossRef Google scholar
[20]
Zhang M H, Wang K, Zhou J S, . Thermally stable piezoelectric properties of (K, Na)NbO3-based lead-free perovskite with rhombohedral-tetragonal coexisting phase. Acta Materialia, 2017, 122: 344–351
CrossRef Google scholar
[21]
Damjanovic D. Hysteresis in piezoelectric and ferroelectric materials. In: Bertotti G, Mayergoyz I D, eds. The Science of Hysteresis. Elsevier, 2005, 337–465
[22]
Zheng T, Wu J, Xiao D, . Giant d33 in nonstoichiometric (K, Na)NbO3-based lead-free ceramics. Scripta Materialia, 2015, 94: 25–27
CrossRef Google scholar
[23]
Jiang L, Li Y, Xing J, . Phase structure and enhanced piezoelectric properties in (1−x)(K0.48Na0.52)(Nb0.95Sb0.05)O3–x(Bi0.5Na0.42Li0.08)0.9Sr0.1ZrO3 lead-free piezoelectric ceramics. Ceramics International, 2017, 43(2): 2100–2106
CrossRef Google scholar
[24]
Lee K T, Lee T G, Kim S W, . Thermally stable high strain and piezoelectric characteristics of (Li, Na, K)(Nb, Sb)O3-CaZrO3 ceramics for piezo actuators. Journal of the American Ceramic Society, 2019, 102(10): 6115–6125
CrossRef Google scholar
[25]
Hao J, Li W, Zhai J, . Progress in high-strain perovskite piezoelectric ceramics. Materials Science and Engineering R: Reports, 2019, 135: 1–57
CrossRef Google scholar
[26]
Zhang Y, Li J F. Review of chemical modification on potassium sodium niobate lead-free piezoelectrics. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2019, 7(15): 4284–4303
CrossRef Google scholar
[27]
Chen K, Zhang F, Li D, . Acceptor doping effects in (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics. Ceramics International, 2016, 42(2): 2899–2903
CrossRef Google scholar
[28]
Zhao Y, Chen Y, Chen K. Improvement in synthesis of (K0.5Na0.5)NbO3 powders by Ge4+ acceptor doping. Frontiers of Materials Science, 2016, 10(4): 422–427
CrossRef Google scholar
[29]
Chen K, Zhang F, Li D, . Acceptor doping effects in (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics. Ceramics International, 2016, 42(2): 2899–2903
CrossRef Google scholar
[30]
Chen K, Tang J. Effects of acceptor doping on sintering and piezoelectric properties of (K0.4825Na0.4825Li0.035)(Nb0.8Ta0.2)O3 lead-free piezoelectric ceramics. Journal of Alloys and Compounds, 2017, 695: 3364–3369
CrossRef Google scholar
[31]
Chen K, Zhang F, Jiao Y, . Effects of GeO2 addition on sintering and properties of (K0.5Na0.5)NbO3 ceramics. Journal of the American Ceramic Society, 2016, 99(5): 1681–1686
CrossRef Google scholar
[32]
Chen K, Zhou J, Zhang F, . Screening sintering aids for (K0.5Na0.5)NbO3 ceramics. Journal of the American Ceramic Society, 2015, 98(6): 1698–1701
CrossRef Google scholar
[33]
Wang T, Wang D, Liao Y, . Defect structure, ferroelectricity and piezoelectricity in Fe/Mn/Cu-doped K0.5Na0.5NbO3 lead-free piezoelectric ceramics. Journal of the European Ceramic Society, 2018, 38(15): 4915–4921
CrossRef Google scholar
[34]
Coondoo I, Panwar N, Maiwa H, . Improved piezoelectric and energy harvesting characteristics in lead-free Fe2O3 modified KNN ceramics. Journal of Electroceramics, 2015, 34(4): 255–261
CrossRef Google scholar
[35]
Zhao Z H, Dai Y J, Huang F. The formation and effect of defect dipoles in lead-free piezoelectric ceramics: A review. Sustainable Materials and Technologies, 2019, e00092
CrossRef Google scholar
[36]
Uchino K, Nomura S. Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectrics, 1982, 44(1): 55–61
CrossRef Google scholar
[37]
Damjanovic D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Reports on Progress in Physics, 1998, 61(9): 1267–1324
CrossRef Google scholar
[38]
Dai Y J, Zhao Y J, Zhao Z, . High electrostrictive strain induced by defect dipoles in acceptor-doped (K0.5Na0.5)NbO3 ceramics. Journal of Physics D: Applied Physics, 2016, 49(27): 275303
CrossRef Google scholar

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 21371056).

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1577 KB)

Accesses

Citations

Detail

Sections
Recommended

/