SrTiO3/TiO2 heterostructure nanowires with enhanced electron--hole separation for efficient photocatalytic activity
Liuxin YANG, Zhou CHEN, Jian ZHANG, Chang-An WANG
SrTiO3/TiO2 heterostructure nanowires with enhanced electron--hole separation for efficient photocatalytic activity
Heterostructure is an effective strategy to facilitate the charge carrier separation and promote the photocatalytic performance. In this paper, uniform SrTiO3 nanocubes were in-situ grown on TiO2 nanowires to construct heterojunctions. The composites were prepared by a facile alkaline hydrothermal method and an in-situ deposition method. The obtained SrTiO3/TiO2 exhibits much better photocatalytic activity than those of pure TiO2 nanowires and commercial TiO2 (P25) evaluated by photocatalytic water splitting and decomposition of Rhodamine B (RB). The hydrogen generation rate of SrTiO3/TiO2 nanowires could reach 111.26 mmol·g−1·h−1 at room temperature, much better than those of pure TiO2 nanowires (44.18 mmol·g−1·h−1) and P25 (35.77 mmol·g−1·h−1). The RB decomposition rate of SrTiO3/TiO2 is 7.2 times of P25 and 2.4 times of pure TiO2 nanowires. The photocatalytic activity increases initially and then decreases with the rising content of SrTiO3, suggesting an optimum SrTiO3/TiO2 ratio that can further enhance the catalytic activity. The improved photocatalytic activity of SrTiO3/TiO2 is principally attributed to the enhanced charge separation deriving from the SrTiO3/TiO2 heterojunction.
photocatalytic / SrTiO3/TiO2 nanowire / heterostructure / nanocomposite
[1] |
Xie Z, Feng Y, Wang F,
CrossRef
Google scholar
|
[2] |
Sang Y, Zhao Z, Zhao M,
CrossRef
Pubmed
Google scholar
|
[3] |
Dong S, Ding X, Guo T,
CrossRef
Google scholar
|
[4] |
Sun Q, Wang N, Yu J,
CrossRef
Pubmed
Google scholar
|
[5] |
Shi R, Cao Y, Bao Y,
CrossRef
Pubmed
Google scholar
|
[6] |
Wei R B, Huang Z L, Gu G H,
CrossRef
Google scholar
|
[7] |
Zhou M, Wang S, Yang P,
CrossRef
Google scholar
|
[8] |
Jin J, Yu J, Guo D,
CrossRef
Pubmed
Google scholar
|
[9] |
Kuehnel M F, Orchard K L, Dalle K E,
CrossRef
Pubmed
Google scholar
|
[10] |
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38
CrossRef
Pubmed
Google scholar
|
[11] |
Zhang P, Yu L, Lou X W D. Construction of heterostructured Fe2O3–TiO2 microdumbbells for photoelectrochemical water oxidation. Angewandte Chemie International Edition, 2018, 57(46): 15076–15080
CrossRef
Pubmed
Google scholar
|
[12] |
Gao C, Wei T, Zhang Y,
CrossRef
Pubmed
Google scholar
|
[13] |
Elbanna O, Zhu M, Fujitsuka M,
CrossRef
Google scholar
|
[14] |
Huang Z, Sun Q, Lv K,
CrossRef
Google scholar
|
[15] |
Wang Y, Yang C, Chen A,
CrossRef
Google scholar
|
[16] |
Woo S J, Choi S, Kim S Y,
CrossRef
Google scholar
|
[17] |
Xu H, Ouyang S, Liu L,
CrossRef
Google scholar
|
[18] |
Meng A, Zhang J, Xu D,
CrossRef
Google scholar
|
[19] |
Ge M, Li Q, Cao C,
CrossRef
Pubmed
Google scholar
|
[20] |
Lu Q, Lu Z, Lu Y,
CrossRef
Pubmed
Google scholar
|
[21] |
Zhu K, Neale N R, Miedaner A,
CrossRef
Pubmed
Google scholar
|
[22] |
Crake A, Christoforidis K C, Kafizas A,
CrossRef
Google scholar
|
[23] |
Wang H, Liu H, Wang S,
CrossRef
Google scholar
|
[24] |
Burek B O, Bahnemann D W, Bloh J Z. Modeling and optimization of the photocatalytic reduction of molecular oxygen to hydrogen peroxide over titanium dioxide. ACS Catalysis, 2019, 9(1): 25–37
CrossRef
Google scholar
|
[25] |
Miyoshi A, Vequizo J J M, Nishioka S,
CrossRef
Google scholar
|
[26] |
Wenderich K, Mul G. Methods, mechanism, and applications of photodeposition in photocatalysis: A review. Chemical Reviews, 2016, 116(23): 14587–14619
CrossRef
Pubmed
Google scholar
|
[27] |
Li K, Peng B, Peng T. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catalysis, 2016, 6(11): 7485–7527
CrossRef
Google scholar
|
[28] |
Reza Gholipour M, Dinh C T, Béland F,
CrossRef
Pubmed
Google scholar
|
[29] |
Wang W, Xu D, Cheng B,
CrossRef
Google scholar
|
[30] |
Li L, Yan J, Wang T,
CrossRef
Pubmed
Google scholar
|
[31] |
Yuan Y P, Ruan L W, Barber J,
CrossRef
Google scholar
|
[32] |
Xu Y, Li A, Yao T,
CrossRef
Pubmed
Google scholar
|
[33] |
Chen S, Thind S S, Chen A. Nanostructured materials for water splitting-state of the art and future needs: A mini-review. Electrochemistry Communications, 2016, 63: 10–17
CrossRef
Google scholar
|
[34] |
Lu Y, Cheng X, Tian G,
CrossRef
Google scholar
|
[35] |
Ge J F, Liu Z L, Liu C,
CrossRef
Pubmed
Google scholar
|
[36] |
Mu L, Zhao Y, Li A,
CrossRef
Google scholar
|
[37] |
Song Q, Yu T L, Lou X,
CrossRef
Pubmed
Google scholar
|
[38] |
Lu X, Jiang P, Bao X. Phonon-enhanced photothermoelectric effect in SrTiO3 ultra-broadband photodetector. Nature Communications, 2019, 10: 138
CrossRef
Google scholar
|
[39] |
Ji L, McDaniel M D, Wang S,
CrossRef
Pubmed
Google scholar
|
[40] |
Wang Y, Zhang D, Wen C,
CrossRef
Pubmed
Google scholar
|
[41] |
Jiao Z, Chen T, Xiong J,
CrossRef
Google scholar
|
[42] |
Kang Q, Wang T, Li P,
CrossRef
Pubmed
Google scholar
|
[43] |
Zhao W, Liu N, Wang H,
CrossRef
Google scholar
|
[44] |
Cao T, Li Y, Wang C,
CrossRef
Pubmed
Google scholar
|
[45] |
Zhang J, Bang J H, Tang C,
CrossRef
Pubmed
Google scholar
|
[46] |
Vasquez R P. SrTiO3 by XPS. Surface Science Spectra, 1992, 1(1): 129–135
CrossRef
Google scholar
|
[47] |
Diebold U, Madey T E. TiO2 by XPS. Surface Science Spectra, 1996, 4(3): 227–231
CrossRef
Google scholar
|
[48] |
Tu W, Zhou Y, Zou Z. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. Advanced Materials, 2014, 26(27): 4607–4626
CrossRef
Pubmed
Google scholar
|
[49] |
Xu T, Wang S, Li L,
CrossRef
Google scholar
|
[50] |
Wei Y, Wang J, Yu R,
CrossRef
Pubmed
Google scholar
|
[51] |
Zhou J, Yin L, Zha K,
CrossRef
Google scholar
|
[52] |
Wu K, Zhu H, Liu Z,
CrossRef
Pubmed
Google scholar
|
[53] |
Yang J, Yan H, Wang X,
CrossRef
Google scholar
|
[54] |
Wu K, Chen Z, Lv H,
CrossRef
Pubmed
Google scholar
|
[55] |
Kumar S, Parlett C M A, Isaacs M A,
CrossRef
Google scholar
|
[56] |
Stylidi M, Kondarides D I, Verykios X E. Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions. Applied Catalysis B: Environmental, 2004, 47(3): 189–201
CrossRef
Google scholar
|
/
〈 | 〉 |