Preparation and optimization of freestanding GaN using low-temperature GaN layer
Yuan TIAN , Yongliang SHAO , Xiaopeng HAO , Yongzhong WU , Lei ZHANG , Yuanbin DAI , Qin HUO , Baoguo ZHANG , Haixiao HU
Front. Mater. Sci. ›› 2019, Vol. 13 ›› Issue (3) : 314 -322.
Preparation and optimization of freestanding GaN using low-temperature GaN layer
In this work, a method to acquire freestanding GaN by using low temperature (LT)-GaN layer was put forward. To obtain porous structure and increase the crystallinity, LT-GaN layers were annealed at high temperature. The morphology of LT-GaN layers with different thickness and annealing temperature before and after annealing was analyzed. Comparison of GaN films using different LT-GaN layers was made to acquire optimal LT-GaN process. According to HRXRD and Raman results, GaN grown on 800 nm LT-GaN layer which was annealed at 1090 °C has good crystal quality and small stress. The GaN film was successfully separated from the substrate after cooling down. The self-separation mechanism of this method was discussed. Cross-sectional EBSD mapping measurements were carried out to investigate the effect of LT-buffer layer on improvement of crystal quality and stress relief. The optical property of the obtained freestanding GaN film was also determined by PL measurement.
GaN / self-separation / low-temperature / annealing
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
/
| 〈 |
|
〉 |