Graphene-based bipolar plates for polymer electrolyte membrane fuel cells
Ram Sevak SINGH, Anurag GAUTAM, Varun RAI
Graphene-based bipolar plates for polymer electrolyte membrane fuel cells
Bipolar plates (BPs) are a major component of polymer electrolyte membrane fuel cells (PEMFCs). BPs play a multifunctional character within a PEMFC stack. It is one of the most costly and critical part of the fuel cell, and hence the development of efficient and cost-effective BPs is of much interest for the fabrication of next-generation PEMFCs in future. Owing to high electrical conductivity and chemical inertness, graphene is an ideal candidate to be utilized in BPs. This paper reviews recent advances in the area of graphene-based BPs for PEMFC applications. Various aspects including the momentous functions of BPs in the PEMFC, favorable features of graphene-based BPs, performance evaluation of various reported BPs with their advantages and disadvantages, challenges at commercial level products and future prospects of frontier research in this direction are extensively documented.
graphene / bipolar plate / polymer electrolyte membrane fuel cell / proton exchange membrane fuel cell
[1] |
Wind J, Späh R, Kaiser W,
CrossRef
Google scholar
|
[2] |
Bar-On I, Kirchain R, Roth R. Technical cost analysis for PEM fuel cells. Journal of Power Sources, 2002, 109(1): 71–75
CrossRef
Google scholar
|
[3] |
Lv H, Mu S. Nano-ceramic support materials for low temperature fuel cell catalysts. Nanoscale, 2014, 6(10): 5063–5074
CrossRef
Pubmed
Google scholar
|
[4] |
Wei M, Jiang M, Liu X,
CrossRef
Google scholar
|
[5] |
Mehta V, Cooper J S. Review and analysis of PEM fuel cell design and manufacturing. Journal of Power Sources, 2003, 114(1): 32–53
CrossRef
Google scholar
|
[6] |
Li X, Sabir I. Review of bipolar plates in PEM fuel cells: Flow-field designs. International Journal of Hydrogen Energy, 2005, 30(4): 359–371
CrossRef
Google scholar
|
[7] |
Davies D, Adcock P, Turpin M,
CrossRef
Google scholar
|
[8] |
Busick D, Wilson M. Development of composite materials for PEFC bipolar plates. MRS Online Proceedings Library Archive, 1999, 575
CrossRef
Google scholar
|
[9] |
Heinzel A, Mahlendorf F, Niemzig O,
CrossRef
Google scholar
|
[10] |
Borup R L, Vanderborgh N E. Design and testing criteria for bipolar plate materials for PEM fuel cell applications. MRS Online Proceedings Library Archive, 1995, 393
|
[11] |
Lee S J, Huang C H, Lai J J,
CrossRef
Google scholar
|
[12] |
Dundar F, Dur E, Mahabunphachai S,
CrossRef
Google scholar
|
[13] |
Jin C K, Kang C G. Fabrication by vacuum die casting and simulation of aluminum bipolar plates with micro-channels on both sides for proton exchange membrane (PEM) fuel cells. International Journal of Hydrogen Energy, 2012, 37(2): 1661–1676
CrossRef
Google scholar
|
[14] |
Hung J C, Chang D H, Chuang Y. The fabrication of high-aspect-ratio micro-flow channels on metallic bipolar plates using die-sinking micro-electrical discharge machining. Journal of Power Sources, 2012, 198: 158–163
CrossRef
Google scholar
|
[15] |
Deprez N, McLachlan D. The analysis of the electrical conductivity of graphite conductivity of graphite powders during compaction. Journal of Physics D: Applied Physics, 1988, 21(1): 101–107
CrossRef
Google scholar
|
[16] |
Davies D, Adcock P, Turpin M,
CrossRef
Google scholar
|
[17] |
Dhakate S, Mathur R, Kakati B,
CrossRef
Google scholar
|
[18] |
Roßberg K, Trapp V. Graphite-based bipolar plates. In: Vielstich W, Gasteiger H A, Lamm A,
|
[19] |
Cho E, Jeon U S, Ha H,
CrossRef
Google scholar
|
[20] |
Kuan H C, Ma C C M, Chen K H,
CrossRef
Google scholar
|
[21] |
Hodgson D, May B, Adcock P,
CrossRef
Google scholar
|
[22] |
He D, Tang H, Kou Z,
CrossRef
Pubmed
Google scholar
|
[23] |
Hung Y, Tawfik H, El-Khatib K M,
CrossRef
Google scholar
|
[24] |
Zhang D, Duan L, Guo L,
CrossRef
Google scholar
|
[25] |
Bi F, Peng L, Yi P,
CrossRef
Google scholar
|
[26] |
Yi P, Zhang W, Bi F,
CrossRef
Google scholar
|
[27] |
Jayaraj J, Kim Y, Kim K,
CrossRef
Google scholar
|
[28] |
Zhang D, Wang Z, Huang K. Composite coatings with in situ formation for Fe–Ni–Cr alloy as bipolar plate of PEMFC. International Journal of Hydrogen Energy, 2013, 38(26): 11379–11391
CrossRef
Google scholar
|
[29] |
Omrani M, Habibi M, Amrollahi R,
CrossRef
Google scholar
|
[30] |
Yoon W, Huang X, Fazzino P,
CrossRef
Google scholar
|
[31] |
Wang S, Hou M, Zhao Q,
CrossRef
Google scholar
|
[32] |
Feng K, Shen Y, Sun H,
CrossRef
Google scholar
|
[33] |
Wang H, Sweikart M A, Turner J A. Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells. Journal of Power Sources, 2003, 115(2): 243–251
CrossRef
Google scholar
|
[34] |
Silva R, Franchi D, Leone A,
CrossRef
Google scholar
|
[35] |
Joseph S, McClure J, Chianelli R,
CrossRef
Google scholar
|
[36] |
Wang L, Sun J, Kang B,
CrossRef
Google scholar
|
[37] |
Wang S H, Peng J, Lui W B,
CrossRef
Google scholar
|
[38] |
Gamburzev S, Appleby A J. Recent progress in performance improvement of the proton exchange membrane fuel cell (PEMFC). Journal of Power Sources, 2002, 107(1): 5–12
CrossRef
Google scholar
|
[39] |
Kumar A, Reddy R G. Materials and design development for bipolar/end plates in fuel cells. Journal of Power Sources, 2004, 129(1): 62–67
CrossRef
Google scholar
|
[40] |
Cho E, Jeon U S, Hong S A,
CrossRef
Google scholar
|
[41] |
Yi P, Peng L, Feng L,
CrossRef
Google scholar
|
[42] |
Lee Y H, Li S M, Tseng C J,
CrossRef
Google scholar
|
[43] |
Tseng C J, Tsai B T, Liu Z S,
CrossRef
Google scholar
|
[44] |
Lee S J, Huang C H, Chen Y P. Investigation of PVD coating on corrosion resistance of metallic bipolar plates in PEM fuel cell. Journal of Materials Processing Technology, 2003, 140(1–3): 688–693
CrossRef
Google scholar
|
[45] |
Gladczuk L, Joshi C, Patel A,
CrossRef
Google scholar
|
[46] |
Ma L, Warthesen S, Shores D A. Evaluation of materials for bipolar plates in PEMFCs. Journal of New Materials for Electrochemical Systems, 2000, 3(3): 221–228
CrossRef
Google scholar
|
[47] |
Wang H, Turner J. Reviewing metallic PEMFC bipolar plates. Fuel Cells, 2010, 10(4): 510–519
CrossRef
Google scholar
|
[48] |
Hentall P L, Lakeman J B, Mepsted G O,
CrossRef
Google scholar
|
[49] |
Hornung R, Kappelt G. Bipolar plate materials development using Fe-based alloys for solid polymer fuel cells. Journal of Power Sources, 1998, 72(1): 20–21
CrossRef
Google scholar
|
[50] |
Scholta J, Rohland B, Trapp V,
CrossRef
Google scholar
|
[51] |
Scholta J, Berg N, Wilde P,
CrossRef
Google scholar
|
[52] |
Besmann T M, Klett J W, Burchell T D. Carbon composite for a PEM fuel cell bipolar plate. MRS Online Proceedings Library Archive, 1997, 496
CrossRef
Google scholar
|
[53] |
Cunningham N, Guay D, Dodelet J,
CrossRef
Google scholar
|
[54] |
Gautam A, Ram S. Shape-controlled silver metal of nanospheroids from a polymer-assisted autocombustion reaction in open air. Journal of Alloys and Compounds, 2008, 463(1–2): 428–434
CrossRef
Google scholar
|
[55] |
Chang H, Koschany P, Lim C,
|
[56] |
Tawfik H, Hung Y, Mahajan D. Metal bipolar plates for PEM fuel cell — a review. Journal of Power Sources, 2007, 163(2): 755–767
CrossRef
Google scholar
|
[57] |
Brady M, Weisbrod K, Zawodzinski C,
CrossRef
Google scholar
|
[58] |
Brady M P, Weisbrod K, Paulauskas I,
CrossRef
Google scholar
|
[59] |
Li M, Luo S, Zeng C,
CrossRef
Google scholar
|
[60] |
Middelman E, Kout W, Vogelaar B,
CrossRef
Google scholar
|
[61] |
Taherian R. A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: Materials, fabrication, and material selection. Journal of Power Sources, 2014, 265: 370–390
CrossRef
Google scholar
|
[62] |
Hermann A, Chaudhuri T, Spagnol P. Bipolar plates for PEM fuel cells: A review. International Journal of Hydrogen Energy, 2005, 30(12): 1297–1302
CrossRef
Google scholar
|
[63] |
Steele B C, Heinzel A. Materials for fuel-cell technologies. Nature, 2001, 414(6861): 345–352
CrossRef
Pubmed
Google scholar
|
[64] |
Dihrab S S, Sopian K, Alghoul M,
CrossRef
Google scholar
|
[65] |
Yuan X Z, Wang H, Zhang J,
|
[66] |
Iwan A, Malinowski M, Pasciak G. Polymer fuel cell components modified by graphene: Electrodes, electrolytes and bipolar plates. Renewable & Sustainable Energy Reviews, 2015, 49: 954–967
CrossRef
Google scholar
|
[67] |
Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6(3): 183–191
CrossRef
Pubmed
Google scholar
|
[68] |
Novoselov K S, Geim A K, Morozov S V,
|
[69] |
Singh R S, Nalla V, Chen W,
CrossRef
Pubmed
Google scholar
|
[70] |
Singh R S, Nalla V, Chen W,
CrossRef
Google scholar
|
[71] |
Singh R S, Wang X, Chen W,
CrossRef
Google scholar
|
[72] |
Singh R S, Li D, Xiong Q,
CrossRef
Google scholar
|
[73] |
Santoso I, Singh R S, Gogoi P K,
CrossRef
Google scholar
|
[74] |
Wu Z S, Ren W, Gao L,
CrossRef
Pubmed
Google scholar
|
[75] |
Peigney A, Laurent C, Flahaut E,
CrossRef
Google scholar
|
[76] |
Lee C, Wei X, Kysar J W,
CrossRef
Pubmed
Google scholar
|
[77] |
Balandin A A, Ghosh S, Bao W,
CrossRef
Pubmed
Google scholar
|
[78] |
Williams J R, Dicarlo L, Marcus C M. Quantum Hall effect in a gate-controlled p–n junction of graphene. Science, 2007, 317(5838): 638–641
CrossRef
Pubmed
Google scholar
|
[79] |
Novoselov K S, Geim A K, Morozov S V,
CrossRef
Pubmed
Google scholar
|
[80] |
Stankovich S, Dikin D A, Piner R D,
CrossRef
Google scholar
|
[81] |
Hernandez Y, Nicolosi V, Lotya M,
CrossRef
Pubmed
Google scholar
|
[82] |
Hummers W S, Offeman R E. Preparation of graphitic oxide. Journal of the American Chemical Society, 1958, 80(6): 1339
CrossRef
Google scholar
|
[83] |
Choucair M, Thordarson P, Stride J A. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nature Nanotechnology, 2009, 4(1): 30–33
CrossRef
Pubmed
Google scholar
|
[84] |
Obraztsov A N. Chemical vapour deposition: Making graphene on a large scale. Nature Nanotechnology, 2009, 4(4): 212–213
CrossRef
Pubmed
Google scholar
|
[85] |
Sutter P W, Flege J I, Sutter E A. Epitaxial graphene on ruthenium. Nature Materials, 2008, 7(5): 406–411
CrossRef
Pubmed
Google scholar
|
[86] |
Kou Z, Meng T, Guo B,
CrossRef
Google scholar
|
[87] |
Amiinu I S, Zhang J, Kou Z,
CrossRef
Pubmed
Google scholar
|
[88] |
He D, Kou Z, Xiong Y,
CrossRef
Google scholar
|
[89] |
Kyhl L, Nielsen S F, Čabo A G,
CrossRef
Pubmed
Google scholar
|
[90] |
Zhang Y, Zhang H, Wang B,
CrossRef
Google scholar
|
[91] |
Xu W, Zhao K, Zhang L,
CrossRef
Google scholar
|
[92] |
Hsieh Y P, Hofmann M, Chang K W,
CrossRef
Pubmed
Google scholar
|
[93] |
Wlasny I, Dabrowski P, Rogala M,
CrossRef
Google scholar
|
[94] |
Rozada R, Paredes J I, Villar-Rodil S,
CrossRef
Google scholar
|
[95] |
Li X, Cai W, An J,
CrossRef
Pubmed
Google scholar
|
[96] |
Prasai D, Tuberquia J C, Harl R R,
CrossRef
Pubmed
Google scholar
|
[97] |
Ye X, Lin Z, Zhang H,
CrossRef
Google scholar
|
[98] |
Nazarova M, Stora T, Zhukov A,
CrossRef
Google scholar
|
[99] |
Pu N W, Shi G N, Liu Y M,
CrossRef
Google scholar
|
[100] |
Antunes R A, Oliveira M C L, Ett G,
CrossRef
Google scholar
|
[101] |
Sudagar J, Lian J, Sha W. Electroless nickel, alloy, composite and nano coatings—A critical review. Journal of Alloys and Compounds, 2013, 571: 183–204
CrossRef
Google scholar
|
[102] |
Stoot A C, Camilli L, Spiegelhauer S A,
CrossRef
Google scholar
|
[103] |
Ren Y, Anisur M, Qiu W,
CrossRef
Google scholar
|
[104] |
Lee Y H, Noh S, Lee J H,
CrossRef
Google scholar
|
[105] |
Zheng Z, Liu Y, Bai Y,
CrossRef
Google scholar
|
[106] |
Mišković-Stanković V, Jevremović I, Jung I,
CrossRef
Google scholar
|
[107] |
Kim Y J, Kim D H, Kim J S,
CrossRef
Google scholar
|
[108] |
Staudenmaier L. Verfahren zur darstellung der graphitsäure. European Journal of Inorganic Chemistry, 1899, 32(2): 1394–1399 (in German)
CrossRef
Google scholar
|
[109] |
Lv J, Tongxiang L, Chen W. The effects of molybdenum and reduced graphene oxide on corrosion resistance of amorphous nickel–phosphorus as bipolar plates in PEMFC environment. International Journal of Hydrogen Energy, 2016, 41(23): 9738–9745
CrossRef
Google scholar
|
[110] |
Raghupathy Y, Kamboj A, Rekha M,
CrossRef
Google scholar
|
[111] |
Hirata M, Gotou T, Horiuchi S,
CrossRef
Google scholar
|
[112] |
Jang H, Kim J H, Kang H,
CrossRef
Google scholar
|
[113] |
Pavan A S S, Ramanan S R. A study on corrosion resistant graphene films on low alloy steel. Applied Nanoscience, 2016, 6(8): 1175–1181
CrossRef
Google scholar
|
[114] |
Liu Y, Zhang J, Li S,
CrossRef
Google scholar
|
[115] |
Liu J, Hua L, Li S,
CrossRef
Google scholar
|
[116] |
Berlia R, Kumar M K P, Srivastava C. Electrochemical behavior of Sn–graphene composite coating. RSC Advances, 2015, 5(87): 71413–71418
CrossRef
Google scholar
|
[117] |
Liu C, Su F, Liang J. Producing cobalt–graphene composite coating by pulse electrodeposition with excellent wear and corrosion resistance. Applied Surface Science, 2015, 351: 889–896
CrossRef
Google scholar
|
[118] |
Sadhir M H, Saranya M, Aravind M,
CrossRef
Google scholar
|
[119] |
Amani H, Mostafavi E, Arzaghi H,
CrossRef
Google scholar
|
[120] |
Chen Z, Ren W, Gao L,
CrossRef
Pubmed
Google scholar
|
[121] |
Yavari F, Chen Z, Thomas A V,
CrossRef
Pubmed
Google scholar
|
[122] |
Wang J K, Xiong G M, Zhu M,
CrossRef
Pubmed
Google scholar
|
[123] |
Loeblein M, Bolker A, Tsang S H,
CrossRef
Pubmed
Google scholar
|
[124] |
Chen K, Shi L, Zhang Y,
CrossRef
Pubmed
Google scholar
|
[125] |
Wu Z S, Winter A, Chen L,
CrossRef
Pubmed
Google scholar
|
[126] |
Sim Y, Kwak J, Kim S Y,
CrossRef
Google scholar
|
[127] |
Jiang X, Drzal L T. Exploring the potential of exfoliated graphene nanoplatelets as the conductive filler in polymeric nanocomposites for bipolar plates. Journal of Power Sources, 2012, 218: 297–306
CrossRef
Google scholar
|
[128] |
Plengudomkit R, Okhawilai M, Rimdusit S. Highly filled graphene–benzoxazine composites as bipolar plates in fuel cell applications. Polymer Composites, 2016, 37(6): 1715–1727
CrossRef
Google scholar
|
[129] |
Rimdusit S, Jubsilp C, Tiptipakorn S. Alloys and Composites of Polybenzoxazines: Properties and Applications. Springer, 2013
|
[130] |
Onyu K, Yeetsorn R, Fowler M,
CrossRef
Google scholar
|
[131] |
Adloo A, Sadeghi M, Masoomi M,
CrossRef
Google scholar
|
[132] |
Kakati B K, Ghosh A, Verma A. Graphene reinforced composite bipolar plate for polymer electrolyte membrane fuel cell. In: American Society of Mechanical Engineers. ASME 2011 9th International Conference on Fuel Cell Science, Engineering and Technology collocated with ASME 2011 5th International Conference on Energy Sustainability, 2011, 301–307
|
[133] |
Ghosh A, Goswami P, Mahanta P,
CrossRef
Google scholar
|
[134] |
Jiang L, Syed J A, Lu H,
CrossRef
Google scholar
|
[135] |
Singh B P, Nayak S, Nanda K K,
CrossRef
Google scholar
|
[136] |
Singh B P, Jena B K, Bhattacharjee S,
CrossRef
Google scholar
|
/
〈 | 〉 |