Structural, electrical and photoluminescence properties of Er3+-doped SrBi4Ti4O15--Bi4Ti3O12 inter-growth ceramics
Fang LIU , Xiangping JIANG , Chao CHEN , Xin NIE , Xiaokun HUANG , Yunjing CHEN , Hao HU , Chunyang SU
Front. Mater. Sci. ›› 2019, Vol. 13 ›› Issue (1) : 99 -106.
Structural, electrical and photoluminescence properties of Er3+-doped SrBi4Ti4O15--Bi4Ti3O12 inter-growth ceramics
Er3+-doped SrBi4Ti4O15–Bi4Ti3O12 (SBT–BIT–xEr3+, x = 0.00, 0.05, 0.10, 0.15 and 0.20) inter-growth ceramics were synthesized by the solid-state reaction method. Structural, electrical and up-conversion properties of SBT–BIT–xEr3+ were investigated. All samples showed a single phase of the orthorhombic structure. Raman spectroscopy indicated that the Er3+ substitution for Bi3+ at A sites of the pseudo-perovskite layer increases the lattice distortion of SBT–BIT–xEr3+ ceramics. The substitution of Bi3+ by Er3+ leads to a decrease of dielectric loss tanδ and an increase of conductivity activation energy. Piezoelectric constant d33 was slightly improved, but dielectric constant was decreased with the Er3+ doping. The SBT–BIT–xEr3+ ceramic with x = 0.15 exhibits the optimized electrical behavior (d33 ~17 pC/N, tanδ ~0.83%). Moreover, two bright green (532 and 548 nm) and one red (670 nm) emission bands were observed under the 980 nm excitation. Optimized emission intensity was also obtained when x = 0.15 for the SBT–BIT–xEr3+ ceramic. Therefore, this kind of ceramics ought to be promising candidates for multifunctional optoelectronic applications.
inter-growth structure / electrical property / multifunctional optoelectronic material / photoluminescence
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
/
| 〈 |
|
〉 |