S-, N- and C-doped ZnO as semiconductor photocatalysts: A review
Vijaya KUMARI, Anuj MITTAL, Jitender JINDAL, Suprabha YADAV, Naveen KUMAR
S-, N- and C-doped ZnO as semiconductor photocatalysts: A review
In the past few decades, many novel non-metal doped ZnO materials have developed hasty interest due to their adaptable properties such as low recombination rate and high activity under the solar light exposure. In this article, we compiled recent research advances in non-metal (S, N, C) doped ZnO, emphasizing on the related mechanism of catalysis and the effect of non-metals on structural, morphological, optical and photocatalytic characteristics of ZnO. This review will enhance the knowledge about the advancement in ZnO and will help in synthesizing new ZnO-based materials with modified structural and photocatalytic properties.
degradation / recombination / mechanism / photocatalyst / pollutant
[1] |
Samadi M, Zirak M, Naseri A,
CrossRef
Google scholar
|
[2] |
Xiao J, Xie Y, Cao H. Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation. Chemosphere, 2015, 121: 1–17
CrossRef
Pubmed
Google scholar
|
[3] |
Wang C C, Li J R, Lv X L,
CrossRef
Google scholar
|
[4] |
Qadri S, Ganoe A, Haik Y. Removal and recovery of acridine orange from solutions by use of magnetic nanoparticles. Journal of Hazardous Materials, 2009, 169(1–3): 318–323
CrossRef
Pubmed
Google scholar
|
[5] |
Panthi G, Park M, Kim H Y,
CrossRef
Google scholar
|
[6] |
Robinson T, Chandran B, Nigam P. Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw. Water Research, 2002, 36(11): 2824–2830
CrossRef
Pubmed
Google scholar
|
[7] |
Wang L, Zhang J, Zhao R,
CrossRef
Google scholar
|
[8] |
Vanhulle S, Trovaslet M, Enaud E,
CrossRef
Pubmed
Google scholar
|
[9] |
Dafnopatidou E K, Gallios G P, Tsatsaroni E G,
CrossRef
Google scholar
|
[10] |
Panizza M, Barbucci A, Ricotti R,
CrossRef
Google scholar
|
[11] |
Ahmad A L, Puasa S W. Reactive dyes decolourization from an aqueous solution by combined coagulation/micellar-enhanced ultrafiltration process. Chemical Engineering Journal, 2007, 132(1–3): 257–265
CrossRef
Google scholar
|
[12] |
Riera-Torres M, Gutiérrez-Bouzán C, Crespi M. Combination of coagulation–flocculation and nanofiltration techniques for dye removal and water reuse in textile effluents. Desalination, 2010, 252(1–3): 53–59
CrossRef
Google scholar
|
[13] |
Ravichandran P, Farzana M H, Meenakshi S. Sorption equilibrium and kinetic studies of Direct Yellow 12 using carbon prepared from bagasse, rice husk and textile waste cloth. Indian Journal of Chemical Technology, 2012, 19(2): 103–110
|
[14] |
Selcuk H. Decolorization and detoxification of textile wastewater by ozonation and coagulation processes. Dyes and Pigments, 2005, 64(3): 217–222
CrossRef
Google scholar
|
[15] |
Beydoun D, Amal R, Low G,
CrossRef
Google scholar
|
[16] |
Asahi R, Morikawa T, Ohwaki T,
CrossRef
Pubmed
Google scholar
|
[17] |
Chen X, Liu L, Yu P Y,
CrossRef
Pubmed
Google scholar
|
[18] |
Chen J, Shi J, Wang X,
CrossRef
Google scholar
|
[19] |
Arslan I, Balcioglu I A, Tuhkanen T,
CrossRef
Google scholar
|
[20] |
Forgacs E, Cserháti T, Oros G. Removal of synthetic dyes from wastewaters: A review. Environment International, 2004, 30(7): 953–971
CrossRef
Pubmed
Google scholar
|
[21] |
Li B, Liu T, Wang Y,
CrossRef
Pubmed
Google scholar
|
[22] |
Verma N, Yadav S, Marí B,
CrossRef
Google scholar
|
[23] |
Williams G, Kamat P V. Graphene-semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir, 2009, 25(24): 13869–13873
CrossRef
Pubmed
Google scholar
|
[24] |
Kumar N, Chauhan N S, Mittal A,
CrossRef
Pubmed
Google scholar
|
[25] |
Zhang H, Lv X, Li Y,
CrossRef
Pubmed
Google scholar
|
[26] |
Neri G, Bonavita A, Milone C,
CrossRef
Google scholar
|
[27] |
Ng Y H, Iwase A, Kudo A,
CrossRef
Google scholar
|
[28] |
Li F, Xu J, Yu X,
CrossRef
Google scholar
|
[29] |
Xiang X, Xie L, Li Z,
CrossRef
Google scholar
|
[30] |
Ilkhechi N N, Kaleji B K. Temperature stability and photocatalytic activity of nanocrystalline cristobalite powders with Cu dopant. Silicon, 2017, 9(6): 943–948
CrossRef
Google scholar
|
[31] |
Hu J, Li H, Huang C,
CrossRef
Google scholar
|
[32] |
Wang Q, Lian J, Ma Q,
CrossRef
Google scholar
|
[33] |
Zhou S S, Liu S Q. Photocatalytic reduction of CO2 based on a CeO2 photocatalyst loaded with imidazole fabricated N-doped graphene and Cu(II) as cocatalysts. Photochemical & Photobiological Sciences, 2017, 16(10): 1563–1569
CrossRef
Pubmed
Google scholar
|
[34] |
Kiriakidou F, Kondarides D I, Verykios X E. The effect of operational parameters and TiO2-doping on the photocatalytic degradation of azo-dyes. Catalysis Today, 1999, 54(1): 119–130
CrossRef
Google scholar
|
[35] |
Yu J C, Xie Y, Tang H Y,
CrossRef
Google scholar
|
[36] |
Kisch H, Macyk W. Visible-light photocatalysis by modified titania. ChemPhysChem, 2002, 3(5): 399–400
CrossRef
Pubmed
Google scholar
|
[37] |
Wang L, Wu Y, Chen F,
CrossRef
Google scholar
|
[38] |
Sakthivel S, Neppolian B, Shankar M V,
CrossRef
Google scholar
|
[39] |
Farzana M H, Meenakshi S. Visible light-driven photoactivity of zinc oxide impregnated chitosan beads for the detoxification of textile dyes. Applied Catalysis A: General, 2015, 503: 124–134
CrossRef
Google scholar
|
[40] |
Akyol A, Yatmaz H C, Bayramoglu M. Photocatalytic decolorization of Remazol Red RR in aqueous ZnO suspensions. Applied Catalysis B: Environmental, 2004, 54(1): 19–24
CrossRef
Google scholar
|
[41] |
Lee J M, Pyun Y B, Yi J,
CrossRef
Google scholar
|
[42] |
Si X, Liu Y, Wu X,
CrossRef
Google scholar
|
[43] |
Fu D, Han G, Chang Y,
CrossRef
Google scholar
|
[44] |
Lee K M, Lai C W, Ngai K S,
CrossRef
Pubmed
Google scholar
|
[45] |
Fox M A, Dulay M T. Heterogeneous photocatalysis. Chemical Reviews, 1993, 93(1): 341–357
CrossRef
Google scholar
|
[46] |
Litter M I. Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems. Applied Catalysis B: Environmental, 1999, 23(2–3): 89–114
CrossRef
Google scholar
|
[47] |
Ma H, Han J, Fu Y,
CrossRef
Google scholar
|
[48] |
Osman H, Su Z, Ma X,
CrossRef
Google scholar
|
[49] |
Carp O, Huisman C L, Reller A. Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 2004, 32(1–2): 33–177
CrossRef
Google scholar
|
[50] |
Shinde S S, Bhosale C H, Rajpure K Y. Photocatalytic degradation of toluene using sprayed N-doped ZnO thin films in aqueous suspension. Journal of Photochemistry and Photobiology B: Biology, 2012, 113: 70–77
CrossRef
Pubmed
Google scholar
|
[51] |
Chen L C, Tu Y J, Wang Y S,
CrossRef
Google scholar
|
[52] |
Habibi M H, Habibi A H. Nanostructure composite ZnFe2O4–FeFe2O4–ZnO immobilized on glass: Photocatalytic activity for degradation of an azo textile dye F3B. Journal of Industrial and Engineering Chemistry, 2014, 20(1): 68–73
CrossRef
Google scholar
|
[53] |
Modirshahla N, Hassani A, Behnajady M A,
CrossRef
Google scholar
|
[54] |
Nishio J, Tokumura M, Znad H T,
CrossRef
Pubmed
Google scholar
|
[55] |
Kim C, Doh S J, Lee S G,
CrossRef
Google scholar
|
[56] |
Panda S K, Dev A, Chaudhuri S. Fabrication and luminescent properties of c-axis oriented ZnO–ZnS core–shell and ZnS nanorod arrays by sulfidation of aligned ZnO nanorod arrays. The Journal of Physical Chemistry C, 2007, 111(13): 5039–5043
CrossRef
Google scholar
|
[57] |
Lu M Y, Song J, Lu M P,
CrossRef
Pubmed
Google scholar
|
[58] |
Li F, Liu X, Kong T,
CrossRef
Google scholar
|
[59] |
Yan C, Xue D. Conversion of ZnO nanorod arrays into ZnO/ZnS nanocable and ZnS nanotube arrays via an in situ chemistry strategy. The Journal of Physical Chemistry B, 2006, 110(51): 25850–25855
CrossRef
Pubmed
Google scholar
|
[60] |
Di Paola A, Palmisano L, Derrigo M,
CrossRef
Google scholar
|
[61] |
Di Paola A, Addamo M, Palmisano L. Mixed oxide/sulfide systems for photocatalysis. Research on Chemical Intermediates, 2003, 29(5): 467–475
CrossRef
Google scholar
|
[62] |
Kołodziejczak-Radzimska A, Jesionowski T. Zinc oxide—from synthesis to application: A review. Materials, 2014, 7(4): 2833–2881
CrossRef
Pubmed
Google scholar
|
[63] |
Wang X, Zhang Q, Wan Q,
CrossRef
Google scholar
|
[64] |
Qin J, Li R, Lu C,
CrossRef
Google scholar
|
[65] |
Nhut J M, Pesant L, Tessonnier J P,
CrossRef
Google scholar
|
[66] |
Shi J, Zheng J, Wu P,
CrossRef
Google scholar
|
[67] |
Shen G, Cho J H, Yoo J K,
CrossRef
Pubmed
Google scholar
|
[68] |
Ohno T, Akiyoshi M, Umebayashi T,
CrossRef
Google scholar
|
[69] |
Patil A B, Patil K R, Pardeshi S K. Ecofriendly synthesis and solar photocatalytic activity of S-doped ZnO. Journal of Hazardous Materials, 2010, 183(1–3): 315–323
CrossRef
Pubmed
Google scholar
|
[70] |
Li J C, Li Y F, Yang T,
CrossRef
Google scholar
|
[71] |
Yang J, Xu C, Ye T,
CrossRef
Google scholar
|
[72] |
Bae S Y, Seo H W, Park J. Vertically aligned sulfur-doped ZnO nanowires synthesized via chemical vapor deposition. The Journal of Physical Chemistry B, 2004, 108(17): 5206–5210
CrossRef
Google scholar
|
[73] |
Zhou P, Yu X, Yang L,
CrossRef
Google scholar
|
[74] |
Panda N R, Acharya B S, Nayak P,
CrossRef
Pubmed
Google scholar
|
[75] |
Xie X Y, Zhan P, Li L Y,
CrossRef
Google scholar
|
[76] |
Darzi S J, Mahjoub A, Bayat A. Sulfur modified ZnO nanorod as a high performance photocatalyst for degradation of Congoredazo dye. International Journal of Nano Dimension, 2015, 6(4): 425–431
CrossRef
Google scholar
|
[77] |
Sanon G, Rup R, Mansingh A. Band-gap narrowing and band structure in degenerate tin oxide (SnO2) films. Physical Review B: Condensed Matter, 1991, 44(11): 5672–5680
CrossRef
Pubmed
Google scholar
|
[78] |
Sernelius B E, Berggren K, Jin Z,
CrossRef
Pubmed
Google scholar
|
[79] |
Long S, Li Y, Yao B,
CrossRef
Google scholar
|
[80] |
Cruz-Vázquez C, Rocha-Alonzo F, Burruel-Ibarra S E,
|
[81] |
Wang X H, Liu S, Chang P,
CrossRef
Google scholar
|
[82] |
Zhang X, Yan X, Zhao J,
CrossRef
Google scholar
|
[83] |
Yoo Y Z, Jin Z W, Chikyow T,
CrossRef
Google scholar
|
[84] |
Geng B Y, Wang G Z, Jiang Z,
CrossRef
Google scholar
|
[85] |
Wang X H, Liu S, Chang P,
CrossRef
Google scholar
|
[86] |
Poongodi G, Mohan Kumar R, Jayavel R. Influence of S doping on structural, optical and visible light photocatalytic activity of ZnO thin films. Ceramics International, 2014, 40(9): 14733–14740
CrossRef
Google scholar
|
[87] |
Yan Y, Al-Jassim M M, Wei S H. Doping of ZnO by group-IB elements. Applied Physics Letters, 2006, 89(18): 181912
CrossRef
Google scholar
|
[88] |
Hsu C L, Su I L, Hsueh T J. Sulfur-doped-ZnO-nanospire-based transparent flexible nanogenerator self-powered by environmental vibration. RSC Advances, 2015, 5(43): 34019–34026
CrossRef
Google scholar
|
[89] |
Ma H C, Ding Y R, Fu Y H,
CrossRef
Google scholar
|
[90] |
Sun Y, He T, Guo H,
CrossRef
Google scholar
|
[91] |
Babikier M, Wang D, Wang J,
CrossRef
Google scholar
|
[92] |
Cho J, Lin Q, Yang S,
CrossRef
Google scholar
|
[93] |
Kar S, Dutta P, Pal T,
CrossRef
Google scholar
|
[94] |
Hsu M H, Chang C J. S-doped ZnO nanorods on stainless-steel wire mesh as immobilized hierarchical photocatalysts for photocatalytic H2 production. International Journal of Hydrogen Energy, 2014, 39(29): 16524–16533
CrossRef
Google scholar
|
[95] |
Park H K, Hong S P, Do Y R. Vertical growth of ZnO nanorods prepared on an ITO-coated glass substrate by hydrothermal–electrochemical deposition. Journal of the Electrochemical Society, 2012, 159(6): D355–D361
CrossRef
Google scholar
|
[96] |
Zha M, Calestani D, Zappettini A,
CrossRef
Pubmed
Google scholar
|
[97] |
Kong Y C, Yu D P, Zhang B,
CrossRef
Google scholar
|
[98] |
Zhang X, Wang L, Zhou G. Synthesis of well-aligned ZnO nanowires without catalysts. Reviews on Advanced Materials Science, 2005, 10(1): 69–72
|
[99] |
Lyu S C, Zhang Y, Lee C J,
CrossRef
Google scholar
|
[100] |
Meng X, Shi Z, Chen X,
CrossRef
Google scholar
|
[101] |
Vanheusden K, Warren W L, Seager C H,
CrossRef
Google scholar
|
[102] |
Qin H, Li W, Xia Y,
CrossRef
Pubmed
Google scholar
|
[103] |
Tang Y H, Sham T K, Jürgensen A,
CrossRef
Google scholar
|
[104] |
Duan X, Huang Y, Cui Y,
CrossRef
Pubmed
Google scholar
|
[105] |
Wang J, Wang Z, Huang B,
CrossRef
Pubmed
Google scholar
|
[106] |
Joshi B N, Yoon H, Na S H,
CrossRef
Google scholar
|
[107] |
Jongnavakit P, Amornpitoksuk P, Suwanboon S,
CrossRef
Google scholar
|
[108] |
Foreman J V, Li J, Peng H,
CrossRef
Pubmed
Google scholar
|
[109] |
Swapna R, Santhosh Kumar M C. Deposition of Na–N dual acceptor doped p-type ZnO thin films and fabrication of p-ZnO:(Na, N)/n-ZnO:Eu homojunction. Materials Science and Engineering B, 2013, 178(16): 1032–1039
CrossRef
Google scholar
|
[110] |
Chen X, Lou Y B, Samia A C S,
CrossRef
Google scholar
|
[111] |
Silva I M P, Byzynski G, Ribeiro C,
CrossRef
Google scholar
|
[112] |
Li D, Haneda H. Synthesis of nitrogen-containing ZnO powders by spray pyrolysis and their visible-light photocatalysis in gas-phase acetaldehyde decomposition. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 155(1–3): 171–178
CrossRef
Google scholar
|
[113] |
Wang L G, Zunger A. Cluster-doping approach for wide-gap semiconductors: the case of p-type ZnO. Physical Review Letters, 2003, 90(25 Pt 1): 256401
CrossRef
Pubmed
Google scholar
|
[114] |
Kamat P V, Huehn R, Nicolaescu R. A “sense and shoot” approach for photocatalytic degradation of organic contaminants in water. The Journal of Physical Chemistry B, 2002, 106(4): 788–794
CrossRef
Google scholar
|
[115] |
Lin B, Fu Z, Jia Y. Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Applied Physics Letters, 2001, 79(7): 943–945
CrossRef
Google scholar
|
[116] |
Wu C. Facile one-step synthesis of N-doped ZnO micropolyhedrons for efficient photocatalytic degradation of formaldehyde under visible-light irradiation. Applied Surface Science, 2014, 319: 237–243
CrossRef
Google scholar
|
[117] |
Chen X, Zhang G, Shi L,
CrossRef
Pubmed
Google scholar
|
[118] |
Solanki J N, Murthy Z V P. Controlled size silver nanoparticles synthesis with water-in-oil microemulsion method: A topical review. Industrial & Engineering Chemistry Research, 2011, 50(22): 12311–12323
CrossRef
Google scholar
|
[119] |
Inoguchi M, Suzuki K, Kageyama K,
CrossRef
Google scholar
|
[120] |
Lim B P, Wang J, Ng S C,
CrossRef
Google scholar
|
[121] |
Jansen M, Letschert H P. Inorganic yellow-red pigments without toxic metals. Nature, 2000, 404(6781): 980–982
CrossRef
Pubmed
Google scholar
|
[122] |
Maki H, Ichinose N, Sakaguchi I,
CrossRef
Google scholar
|
[123] |
Zhao X W, Gao X Y, Chen X M,
CrossRef
Google scholar
|
[124] |
Zhao Y, Zhou M, Li Z,
CrossRef
Google scholar
|
[125] |
Chen S, Zhao W, Zhang S,
CrossRef
Google scholar
|
[126] |
Wu C, Zhang Y C, Huang Q. Solvothermal synthesis of N-doped ZnO microcrystals from commercial ZnO powder with visible light-driven photocatalytic activity. Materials Letters, 2014, 119: 104–106
CrossRef
Google scholar
|
[127] |
Tang Y H, Zheng H, Wang Y,
CrossRef
Google scholar
|
[128] |
Zheng M, Wu J. One-step synthesis of nitrogen-doped ZnO nanocrystallites and their properties. Applied Surface Science, 2009, 255(11): 5656–5661
CrossRef
Google scholar
|
[129] |
Futsuhara M, Yoshioka K, Takai O. Optical properties of zinc oxynitride thin films. Thin Solid Films, 1998, 317(1–2): 322–325
CrossRef
Google scholar
|
[130] |
Wang X, Yang S, Wang J,
CrossRef
Google scholar
|
[131] |
Ong H C, Zhu A X E, Du G T. Dependence of the excitonic transition energies and mosaicity on residual strain in ZnO thin films. Applied Physics Letters, 2002, 80(6): 941–943
CrossRef
Google scholar
|
[132] |
Fouchet A, Prellier W, Mercey B,
CrossRef
Google scholar
|
[133] |
Look D C, Hemsky J W, Sizelove J R. Residual native shallow donor in ZnO. Physical Review Letters, 1999, 82(12): 2552–2555
CrossRef
Google scholar
|
[134] |
Zhu X, Wu H Z, Qiu D J,
CrossRef
Google scholar
|
[135] |
Meng A, Li X, Wang X,
CrossRef
Google scholar
|
[136] |
Söllradl S, Greiwe M, Bukas V J,
CrossRef
Google scholar
|
[137] |
Park S H, Chang J H, Ko H J,
CrossRef
Google scholar
|
[138] |
Fujimura N, Nishihara T, Goto S,
CrossRef
Google scholar
|
[139] |
Panigrahy B, Aslam M, Bahadur D. Effect of Fe doping concentration on optical and magnetic properties of ZnO nanorods. Nanotechnology, 2012, 23(11): 115601
CrossRef
Pubmed
Google scholar
|
[140] |
Perkins C L, Lee S H, Li X,
CrossRef
Google scholar
|
[141] |
Wang L, Lin B, Zhou L,
CrossRef
Google scholar
|
[142] |
Bhirud A P, Sathaye S D, Waichal R P,
CrossRef
Google scholar
|
[143] |
Zong X, Sun C, Yu H,
CrossRef
Google scholar
|
[144] |
Muthulingam S, Bae K B, Khan R,
CrossRef
Google scholar
|
[145] |
Qiu Y, Fan H, Tan G,
CrossRef
Google scholar
|
[146] |
Amanullah M, Javed Q A, Rizwan S. Surfactant-assisted carbon doping in ZnO nanowires using Poly Ethylene Glycol (PEG). Materials Chemistry and Physics, 2016, 180: 128–134
CrossRef
Google scholar
|
[147] |
Lavand A B, Malghe Y S. Synthesis, characterization and visible light photocatalytic activity of nitrogen-doped zinc oxide nanospheres. Journal of Asian Ceramic Societies, 2015, 3(3): 305–310
CrossRef
Google scholar
|
[148] |
Lu J, Zhu J, Wang Z,
CrossRef
Google scholar
|
[149] |
Du J, Liu Z, Huang Y,
CrossRef
Google scholar
|
[150] |
Gao X, Li X, Yu W. Flowerlike ZnO nanostructures via hexamethylenetetramine-assisted thermolysis of zinc-ethylenediamine complex. The Journal of Physical Chemistry B, 2005, 109(3): 1155–1161
CrossRef
Pubmed
Google scholar
|
[151] |
Tuomisto F, Saarinen K, Look D C,
CrossRef
Google scholar
|
[152] |
Li D, Haneda H. Enhancement of photocatalytic activity of sprayed nitrogen-containing ZnO powders by coupling with metal oxides during the acetaldehyde decomposition. Chemosphere, 2004, 54(8): 1099–1110
CrossRef
Pubmed
Google scholar
|
[153] |
Qu D, Zheng M, Du P,
CrossRef
Pubmed
Google scholar
|
[154] |
Zeng H, Cai W, Hu J,
CrossRef
Google scholar
|
[155] |
Naouar M, Ka I, Gaidi M,
CrossRef
Google scholar
|
[156] |
Dong Q, Yin S, Guo C,
CrossRef
Google scholar
|
[157] |
Krýsa J, Keppert M, Jirkovský J,
CrossRef
Google scholar
|
[158] |
Shen J, Hu Y, Li C,
CrossRef
Pubmed
Google scholar
|
[159] |
Li B, Cao H. ZnO@graphene composite with enhanced performance for the removal of dye from water. Journal of Materials Chemistry, 2011, 21(10): 3346–3349
CrossRef
Google scholar
|
[160] |
Lee C, Wei X, Kysar J W,
CrossRef
Pubmed
Google scholar
|
[161] |
Jiao L, Zhang L, Wang X,
CrossRef
Pubmed
Google scholar
|
[162] |
Stankovich S, Dikin D A, Dommett G H B,
CrossRef
Pubmed
Google scholar
|
[163] |
Yang Y, Ren L, Zhang C,
CrossRef
Pubmed
Google scholar
|
[164] |
Ma Q, Zhu X, Zhang D,
CrossRef
Google scholar
|
[165] |
Paci J T, Belytschko T, Schatz G C. Computational studies of the structure, behavior upon heating, and mechanical properties of graphite oxide. The Journal of Physical Chemistry C, 2007, 111(49): 18099–18111
CrossRef
Google scholar
|
[166] |
Chen D, Wang D, Ge Q,
CrossRef
Google scholar
|
[167] |
Xu F, Yuan Y, Wu D,
CrossRef
Google scholar
|
[168] |
Liu W, Wang M, Xu C,
CrossRef
Google scholar
|
[169] |
Tu N, Nguyen K T, Trung D Q,
CrossRef
Google scholar
|
[170] |
Zhang G, Zhang H, Zhang X,
CrossRef
Google scholar
|
[171] |
Ouyang H, Huang J F, Li C,
CrossRef
Google scholar
|
[172] |
Li X, Wang Q, Zhao Y,
CrossRef
Pubmed
Google scholar
|
[173] |
Sakong S, Kratzer P. Density functional study of carbon doping in ZnO. Semiconductor Science and Technology, 2011, 26(1): 014038
CrossRef
Google scholar
|
[174] |
Pan L, Muhammad T, Ma L,
CrossRef
Google scholar
|
[175] |
Pan H, Yi J B, Shen L,
CrossRef
Pubmed
Google scholar
|
[176] |
Neumann B, Bogdanoff P, Tributsch H,
CrossRef
Pubmed
Google scholar
|
[177] |
Kaciulis S. Spectroscopy of carbon: from diamond to nitride films. Surface and Interface Analysis, 2012, 44(8): 1155–1161
CrossRef
Google scholar
|
[178] |
Akbar S, Hasanain S K, Abbas M,
CrossRef
Google scholar
|
[179] |
Zhai J, Wang L, Wang D,
CrossRef
Google scholar
|
[180] |
Majumder T, Mondal S P. Advantages of nitrogen-doped graphene quantum dots as a green sensitizer with ZnO nanorod based photoanodes for solar energy conversion. Journal of Electroanalytical Chemistry, 2016, 769: 48–52
CrossRef
Google scholar
|
[181] |
Zhu Y P, Li M, Liu Y L,
CrossRef
Google scholar
|
[182] |
Lin H F, Liao S C, Hung S W. The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 174(1): 82–87
CrossRef
Google scholar
|
[183] |
Bechambi O, Sayadi S, Najjar W. Photocatalytic degradation of bisphenol A in the presence of C-doped ZnO: Effect of operational parameters and photodegradation mechanism. Journal of Industrial and Engineering Chemistry, 2015, 32: 201–210
CrossRef
Google scholar
|
[184] |
Dai K, Dawson G, Yang S,
CrossRef
Google scholar
|
[185] |
Tayyebi A, outokesh M, Tayebi M,
CrossRef
Google scholar
|
[186] |
Hsiao M C, Liao S H, Yen M Y,
CrossRef
Pubmed
Google scholar
|
[187] |
Li D, Haneda H. Morphologies of zinc oxide particles and their effects on photocatalysis. Chemosphere, 2003, 51(2): 129–137
CrossRef
Pubmed
Google scholar
|
[188] |
Li Y, Zhang B P, Zhao J X,
CrossRef
Google scholar
|
[189] |
Liu S, Sun H, Suvorova A,
CrossRef
Google scholar
|
[190] |
Wei A, Xiong L, Sun L,
CrossRef
Google scholar
|
[191] |
Xu F, Lu Y, Xie Y,
CrossRef
Google scholar
|
[192] |
Mu J, Shao C, Guo Z,
CrossRef
Pubmed
Google scholar
|
[193] |
Sin J C, Lam S M, Satoshi I,
CrossRef
Google scholar
|
[194] |
Zou B, Liu R, Wang F,
CrossRef
Pubmed
Google scholar
|
[195] |
Jing L, Qu Y, Wang B,
CrossRef
Google scholar
|
[196] |
Li C, Hong G, Wang P,
CrossRef
Google scholar
|
[197] |
He W, Kim H K, Wamer W G,
CrossRef
Pubmed
Google scholar
|
[198] |
Bozetine H, Wang Q, Barras A,
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |