A novel black TiO2/ZnO nanocone arrays heterojunction on carbon cloth for highly efficient photoelectrochemical performance
Pengcheng WU, Chang LIU, Yan LUO, Keliang WU, Jianning WU, Xuhong GUO, Juan HOU, Zhiyong LIU
A novel black TiO2/ZnO nanocone arrays heterojunction on carbon cloth for highly efficient photoelectrochemical performance
ZnO nanocone arrays (NCAs) decorated with black TiO2 nanoparticles (B-TiO2 NPs) were uniformly anchored on the surface of carbon cloth (CC) directly by a simply electrochemical deposition method. Thus a novel B-TiO2 NPs/ZnO NCAs–CC hierarchical heterostructure was formed. It displayed superior performance and achieved a higher photocurrent over 0.4 mA·cm−2 before the onset of the dark current, attributed to the separation of the photogenerated electron–hole pair. Based on the B-TiO2 NPs/ZnO NCAs–CC heterostructure, the catalyst was fabricated for promoting the separation of charge carriers. Moreover, the introduction of Ti3+ and oxygen vacancies on the surface of TiO2 NPs expanded the absorption band edge and enhanced the electrical conductivity as well as the charge transportation on the catalytic surface. It indicates that the B-TiO2 NPs/ZnO NCAs–CC composite is beneficial to the improvement of the photoelectrochemical (PEC) activity.
black TiO2 nanoparticles / ZnO nanocones arrays / carbon cloth
[1] |
Liu Y, Liang L, Xiao C,
CrossRef
Google scholar
|
[2] |
Yang J, Cooper J K, Toma F M,
CrossRef
Pubmed
Google scholar
|
[3] |
Li H, Yu H, Quan X,
CrossRef
Pubmed
Google scholar
|
[4] |
Dohcevic-Mitrovic Z, Stojadinovic S, Lozzi L,
|
[5] |
Li T, He J, Peña B,
CrossRef
Pubmed
Google scholar
|
[6] |
Yan L, Zhao W, Liu Z. 1D ZnO/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting. Dalton Transactions, 2016, 45(28): 11346–11352
CrossRef
Pubmed
Google scholar
|
[7] |
Kang J S, Noh Y, Kim J,
CrossRef
Pubmed
Google scholar
|
[8] |
Di Mauro A, Cantarella M, Nicotra G,
CrossRef
Google scholar
|
[9] |
Yang P, Xiao X, Li Y,
CrossRef
Pubmed
Google scholar
|
[10] |
Park S, Lee S, Kim D,
CrossRef
Pubmed
Google scholar
|
[11] |
Zhao H, Wu Q, Hou J,
CrossRef
Google scholar
|
[12] |
Wang Y, Zheng Y Z, Lu S,
CrossRef
Pubmed
Google scholar
|
[13] |
Zou T, Wang C, Tan R,
CrossRef
Pubmed
Google scholar
|
[14] |
Yu W, Xu D, Peng T. Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(39): 19936–19947
CrossRef
Google scholar
|
[15] |
Feng W, Lin L, Li H,
CrossRef
Google scholar
|
[16] |
Zhao H, Huang F, Hou J,
CrossRef
Pubmed
Google scholar
|
[17] |
Zalfani M, van der Schueren B, Mahdouani M,
CrossRef
Google scholar
|
[18] |
Cheng C, Zhang H, Ren W,
CrossRef
Google scholar
|
[19] |
Chen X, Liu L, Huang F. Black titanium dioxide (TiO2) nanomaterials. Chemical Society Reviews, 2015, 44(7): 1861–1885
CrossRef
Pubmed
Google scholar
|
[20] |
Chen X, Liu L, Yu P Y,
CrossRef
Pubmed
Google scholar
|
[21] |
Zhang K, Park J H. Surface localization of defects in black TiO2: Enhancing photoactivity or reactivity. The Journal of Physical Chemistry Letters, 2017, 8(1): 199–207
CrossRef
Pubmed
Google scholar
|
[22] |
Wang B, Shen S, Mao S S. Black TiO2 for solar hydrogen conversion. Journal of Materiomics, 2017, 3(2): 96–111
CrossRef
Google scholar
|
[23] |
Zhang G, Hou S, Zhang H,
CrossRef
Pubmed
Google scholar
|
[24] |
Feng J X, Xu H, Dong Y T,
CrossRef
Pubmed
Google scholar
|
[25] |
Liu Y, Fu N, Zhang G,
CrossRef
Google scholar
|
[26] |
Meng S, Hong Y, Dai Z,
CrossRef
Pubmed
Google scholar
|
[27] |
Hou Y, Wen Z, Cui S,
CrossRef
Pubmed
Google scholar
|
[28] |
Ding M, Yao N, Wang C,
CrossRef
Pubmed
Google scholar
|
[29] |
Kang Q, Cao J, Zhang Y,
CrossRef
Google scholar
|
[30] |
Zhu G, Lin T, Lü X,
CrossRef
Google scholar
|
[31] |
Dong J, Han J, Liu Y,
CrossRef
Pubmed
Google scholar
|
[32] |
Liu N, Schneider C, Freitag D,
CrossRef
Pubmed
Google scholar
|
[33] |
Yin H, Lin T, Yang C,
CrossRef
Pubmed
Google scholar
|
[34] |
Wang Z, Yang C, Lin T,
CrossRef
Google scholar
|
[35] |
Cai H, Liang P, Hu Z,
CrossRef
Pubmed
Google scholar
|
[36] |
Guo S, Zhao X, Zhang W,
CrossRef
Google scholar
|
[37] |
Tran H T T, Kosslick H, Ibad M F,
CrossRef
Google scholar
|
[38] |
Zhou G, Shen L, Xing Z,
CrossRef
Pubmed
Google scholar
|
[39] |
Du C, Wang J, Liu X,
CrossRef
Pubmed
Google scholar
|
[40] |
Wang Z, Han Y, Zeng Y,
CrossRef
Google scholar
|
[41] |
Cai L, Ren F, Wang M,
CrossRef
Google scholar
|
[42] |
Liu C, Wu P, Wu K,
CrossRef
Pubmed
Google scholar
|
[43] |
Su F Y, Zhang W D. Fabrication and photoelectrochemical property of In2O3/ZnO composite nanotube arrays using ZnO nanorods as self-sacrificing templates. Materials Letters, 2018, 211: 65–68
CrossRef
Google scholar
|
[44] |
Ramos P G, Flores E, Sánchez L A,
CrossRef
Google scholar
|
/
〈 | 〉 |