Rare-earth coordination polymer micro/nanomaterials: Preparation, properties and applications
Honghong ZOU, Lei WANG, Chenghui ZENG, Xiaolei GAO, Qingqing WANG, Shengliang ZHONG
Rare-earth coordination polymer micro/nanomaterials: Preparation, properties and applications
Rare-earth coordination polymers (RECPs), as a family member of coordination polymers (CPs), have been prepared and studied widely. Thanks to their characteristic properties and functions, RECPs have already been used in various application fields ranging from catalysis to drug delivery. In recent years, CPs with tunable morphologies and sizes have drawn increasing interest and attractive attention. This review presents the recent research progress of RECP micro/nanomaterials, and emphasizes the preparation, properties and broad applications of these fascinating materials.
coordination polymer / metal--organic framework / rare earth / nanomaterials
[1] |
Zhao D, Timmons D J, Yuan D,
CrossRef
Pubmed
Google scholar
|
[2] |
Spokoyny A M, Kim D, Sumrein A,
CrossRef
Pubmed
Google scholar
|
[3] |
Uemura T, Yanai N, Kitagawa S. Polymerization reactions in porous coordination polymers. Chemical Society Reviews, 2009, 38(5): 1228–1236
CrossRef
Pubmed
Google scholar
|
[4] |
Yang Q, Xu Q, Jiang H L. Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chemical Society Reviews, 2017, 46(15): 4774–4808
CrossRef
Pubmed
Google scholar
|
[5] |
Qiu S, Zhu G. Molecular engineering for synthesizing novel structures of metal–organic frameworks with multifunctional properties. Coordination Chemistry Reviews, 2009, 253(23–24): 2891–2911
CrossRef
Google scholar
|
[6] |
Lin W, Rieter W J, Taylor K M L. Modular synthesis of functional nanoscale coordination polymers. Angewandte Chemie International Edition, 2009, 48(4): 650–658
CrossRef
Pubmed
Google scholar
|
[7] |
Jin L N, Liu Q, Sun W Y. An introduction to synthesis and application of nanoscale metal-carboxylate coordination polymers. CrystEngComm, 2014, 16(19): 3816–3828
CrossRef
Google scholar
|
[8] |
Masoomi M Y, Morsali A. Morphological study and potential applications of nano metal–organic coordination polymers. RSC Advances, 2013, 3(42): 19191–19218
CrossRef
Google scholar
|
[9] |
Wen J, Wilkes G L. Organic/inorganic hybrid network materials by the sol–gel approach. Chemistry of Materials, 1996, 8(8): 1667–1681
CrossRef
Google scholar
|
[10] |
Zou H, Wu S, Shen J. Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chemical Reviews, 2008, 108(9): 3893–3957
CrossRef
Pubmed
Google scholar
|
[11] |
Binnemans K. Lanthanide-based luminescent hybrid materials. Chemical Reviews, 2009, 109(9): 4283–4374
CrossRef
Pubmed
Google scholar
|
[12] |
Freeman A J, Watson R E. Theoretical investigation of some magnetic and spectroscopic properties of rare-earth ions. Physical Review, 1962, 127(6): 2058–2075
CrossRef
Google scholar
|
[13] |
Bünzli J C G. Lanthanide luminescence for biomedical analyses and imaging. Chemical Reviews, 2010, 110(5): 2729–2755
CrossRef
Pubmed
Google scholar
|
[14] |
Bünzli J C G. Benefiting from the unique properties of lanthanide ions. Accounts of Chemical Research, 2006, 39(1): 53–61
CrossRef
Pubmed
Google scholar
|
[15] |
Wang X, Li Y. Rare-earth-compound nanowires, nanotubes, and fullerene-like nanoparticles: synthesis, characterization, and properties. Chemistry, 2003, 9(22): 5627–5635
CrossRef
Pubmed
Google scholar
|
[16] |
Roduner E. Size matters: why nanomaterials are different. Chemical Society Reviews, 2006, 35(7): 583–592
CrossRef
Pubmed
Google scholar
|
[17] |
Albanese A, Tang P S, Chan W C W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annual Review of Biomedical Engineering, 2012, 14(1): 1–16
CrossRef
Pubmed
Google scholar
|
[18] |
Yan C H, Yan Z G, Du Y P,
CrossRef
Google scholar
|
[19] |
Tian Y, Chen B, Hua R,
CrossRef
Google scholar
|
[20] |
Zhang X, Yang P, Wang D,
CrossRef
Google scholar
|
[21] |
Sun L D, Wang Y F, Yan C H. Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra. Accounts of Chemical Research, 2014, 47(4): 1001–1009
CrossRef
Pubmed
Google scholar
|
[22] |
Rieter W J, Taylor K M L, Lin W. Surface modification and functionalization of nanoscale metal–organic frameworks for controlled release and luminescence sensing. Journal of the American Chemical Society, 2007, 129(32): 9852–9853
CrossRef
Pubmed
Google scholar
|
[23] |
Taylor K M L, Rieter W J, Lin W. Manganese-based nanoscale metal–organic frameworks for magnetic resonance imaging. Journal of the American Chemical Society, 2008, 130(44): 14358–14359
CrossRef
Pubmed
Google scholar
|
[24] |
Rieter W J, Pott K M, Taylor K M L,
CrossRef
Pubmed
Google scholar
|
[25] |
Daiguebonne C, Kerbellec N, Guillou O,
CrossRef
Pubmed
Google scholar
|
[26] |
Allendorf M D, Bauer C A, Bhakta R K,
CrossRef
Pubmed
Google scholar
|
[27] |
Horrocks W D, Sudnick D R. Lanthanide ion luminescence probes of the structure of biological macromolecules. Accounts of Chemical Research, 1981, 14(12): 384–392
CrossRef
Google scholar
|
[28] |
Zhong S L, Xu R, Zhang L F,
CrossRef
Google scholar
|
[29] |
Zhong S, Ji Y, Xie Q,
CrossRef
Google scholar
|
[30] |
Zhong S, Wang M, Wang L,
CrossRef
Google scholar
|
[31] |
Liao Y, Li Y, Wang L,
CrossRef
Pubmed
Google scholar
|
[32] |
Shi M, Zeng C, Wang L,
CrossRef
Google scholar
|
[33] |
Huang S, Xu H, Wang M,
CrossRef
Google scholar
|
[34] |
Zhao D, Wang L, Li Y,
CrossRef
Google scholar
|
[35] |
Zhong S, Jing H, Li Y,
CrossRef
Pubmed
Google scholar
|
[36] |
Qian J J, Qiu L G, Wang Y M,
CrossRef
Pubmed
Google scholar
|
[37] |
Xiao C, Xu H, Zhong S. Au@Eu-based coordination polymers core–shell nanoparticles: Photoluminescence and photothermal properties. Materials Letters, 2018, 216: 106–109
CrossRef
Google scholar
|
[38] |
Li B, Xu H, Xiao C,
CrossRef
Pubmed
Google scholar
|
[39] |
Liu K, You H, Zheng Y,
CrossRef
Google scholar
|
[40] |
Zheng Y, Liu K, Qiao H,
CrossRef
Google scholar
|
[41] |
Wang L, Zou H, Li Y,
CrossRef
Google scholar
|
[42] |
Rieter W J, Taylor K M L, An H,
CrossRef
Pubmed
Google scholar
|
[43] |
Geranmayeh S, Mohammadnejad M, Mohammadi S. Sonochemical synthesis and characterization of a new nano Ce(III) coordination supramolecular compound; highly sensitive direct fluorescent sensor for Cu2+. Ultrasonics Sonochemistry, 2018, 40(Pt A): 453–459
CrossRef
Pubmed
Google scholar
|
[44] |
Etaiw S E H, Marie H. Ultrasonic synthesis of 1D-Zn(II) and La(III) supramolecular coordination polymers nanoparticles, fluorescence, sensing and photocatalytic property. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364: 478–491
CrossRef
Google scholar
|
[45] |
Taylor K M L, Jin A, Lin W. Surfactant-assisted synthesis of nanoscale gadolinium metal–organic frameworks for potential multimodal imaging. Angewandte Chemie International Edition, 2008, 47(40): 7722–7725
CrossRef
Pubmed
Google scholar
|
[46] |
Zhao Y X, Nie Z W, Shi M M,
CrossRef
Google scholar
|
[47] |
Li S S, Ji Y H, Zhang S Q,
CrossRef
Google scholar
|
[48] |
Chen W, Li S, Zeng C H,
CrossRef
Google scholar
|
[49] |
Liu K, You H, Jia G,
CrossRef
Google scholar
|
[50] |
Liu K, You H, Zheng Y,
CrossRef
Google scholar
|
[51] |
Xiao J D, Qiu L G, Ke F,
CrossRef
Google scholar
|
[52] |
Dou Z, Yu J, Xu H,
CrossRef
Google scholar
|
[53] |
Yan B, Qiao X F. Rare-earth/inorganic/organic polymeric hybrid materials: molecular assembly, regular microstructure and photoluminescence. The Journal of Physical Chemistry B, 2007, 111(43): 12362–12374
CrossRef
Pubmed
Google scholar
|
[54] |
Hu S M, Niu H L, Qiu L G,
CrossRef
Google scholar
|
[55] |
Huang P, Wu F, Mao L. Target-triggered switching on and off the luminescence of lanthanide coordination polymer nanoparticles for selective and sensitive sensing of copper ions in rat brain. Analytical Chemistry, 2015, 87(13): 6834–6841
CrossRef
Pubmed
Google scholar
|
[56] |
Li Q, Yuan Z, Qian J,
CrossRef
Google scholar
|
[57] |
Zhong S, Bai L, Zhao D,
CrossRef
Google scholar
|
[58] |
Zheng Y, Sun X, Su H,
CrossRef
Google scholar
|
[59] |
Wang F, Deng K, Wu G,
CrossRef
Google scholar
|
[60] |
Sutar P, Suresh V M, Maji T K. Tunable emission in lanthanide coordination polymer gels based on a rationally designed blue emissive gelator. Chemical Communications, 2015, 51(48): 9876–9879
CrossRef
Pubmed
Google scholar
|
[61] |
Park J U, Lee H J, Cho W,
CrossRef
Pubmed
Google scholar
|
[62] |
Islamoglu T, Atilgan A, Moon S Y,
CrossRef
Google scholar
|
[63] |
Xu G W, Wu Y P, Dong W W,
CrossRef
Pubmed
Google scholar
|
[64] |
Malik M A, Wani M Y, Hashim M A. Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials. Arabian Journal of Chemistry, 2012, 5(4): 397–417
CrossRef
Google scholar
|
[65] |
Devaraju M K, Honma I. Hydrothermal and solvothermal process towards development of LiMPO4 (M= Fe, Mn) nanomaterials for lithium-ion batteries. Advanced Energy Materials, 2012, 2(3): 284–297
CrossRef
Google scholar
|
[66] |
Gao M R, Xu Y F, Jiang J,
CrossRef
Pubmed
Google scholar
|
[67] |
Byrappa K, Adschiri T. Hydrothermal technology for nanotechnology. Progress in Crystal Growth and Characterization of Materials, 2007, 53(2): 117–166
CrossRef
Google scholar
|
[68] |
Cundy C S, Cox P A. The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. Chemical Reviews, 2003, 103(3): 663–702
CrossRef
Pubmed
Google scholar
|
[69] |
Nüchter M, Ondruschka B, Bonrath W,
CrossRef
Google scholar
|
[70] |
Whittaker A G, Mingos D M P. The application of microwave heating to chemical syntheses. Journal of Microwave Power and Electromagnetic Energy, 1994, 29(4): 195–219
CrossRef
Google scholar
|
[71] |
Yu J C, Hu X, Li Q,
CrossRef
Pubmed
Google scholar
|
[72] |
Bagheri S, Chandrappa K G, Hamid S B A. Facile synthesis of nano-sized ZnO by direct precipitation method. Der Pharma Chemica, 2013, 5(3): 265–270
|
[73] |
Shamsipur M, Pourmortazavi S M, Hajimirsadeghi S S,
CrossRef
Google scholar
|
[74] |
Liu Y, Goebl J, Yin Y. Templated synthesis of nanostructured materials. Chemical Society Reviews, 2013, 42(7): 2610–2653
CrossRef
Pubmed
Google scholar
|
[75] |
Jung S, Cho W, Lee H J,
CrossRef
Pubmed
Google scholar
|
[76] |
Liu F, Xue D. Chemical design of complex nanostructured metal oxides in solution. International Journal of Nanoscience, 2009, 8(6): 571–588
CrossRef
Google scholar
|
[77] |
Husein M M, Nassar N N. Nanoparticle preparation using the single microemulsions scheme. Current Nanoscience, 2008, 4(4): 370–380
CrossRef
Google scholar
|
[78] |
Pileni M P. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nature Materials, 2003, 2(3): 145–150
CrossRef
Pubmed
Google scholar
|
[79] |
Pileni M P. Mesostructured fluids in oil-rich regions: structural and templating approaches. Langmuir, 2001, 17(24): 7476–7486
CrossRef
Google scholar
|
[80] |
López-Quintela M A, Tojo C, Blanco M C,
CrossRef
Google scholar
|
[81] |
Cushing B L, Kolesnichenko V L, O’Connor C J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chemical Reviews, 2004, 104(9): 3893–3946
CrossRef
Pubmed
Google scholar
|
[82] |
Kreilgaard M. Influence of microemulsions on cutaneous drug delivery. Advanced Drug Delivery Reviews, 2002, 54(Suppl 1): S77–S98
CrossRef
Pubmed
Google scholar
|
[83] |
Lisiecki I, Billoudet F, Pileni M P. Syntheses of copper nanoparticles in gelified microemulsion and in reverse micelles. Journal of Molecular Liquids, 1997, 72(1–3): 251–261
CrossRef
Google scholar
|
[84] |
Carné A, Carbonell C, Imaz I,
CrossRef
Pubmed
Google scholar
|
[85] |
Suslick K S, Flannigan D J. Inside a collapsing bubble: sonoluminescence and the conditions during cavitation. Annual Review of Physical Chemistry, 2008, 59(1): 659–683
CrossRef
Pubmed
Google scholar
|
[86] |
Suslick K S. Sonochemistry. Science, 1990, 247(4949): 1439–1445
CrossRef
Pubmed
Google scholar
|
[87] |
Xu H, Zeiger B W, Suslick K S. Sonochemical synthesis of nanomaterials. Chemical Society Reviews, 2013, 42(7): 2555–2567
CrossRef
Pubmed
Google scholar
|
[88] |
Gedanken A. Using sonochemistry for the fabrication of nanomaterials. Ultrasonics Sonochemistry, 2004, 11(2): 47–55
CrossRef
Pubmed
Google scholar
|
[89] |
Suslick K S, Price G J. Applications of ultrasound to materials chemistry. Annual Review of Materials Science, 1999, 29(1): 295–326
CrossRef
Google scholar
|
[90] |
Zaitoun M A, Al-Tarawneh S. Effect of varying lanthanide local coordination sphere on luminescence properties illustrated by selected inorganic and organic rare earth complexes synthesized in sol–gel host glasses. Journal of Luminescence, 2011, 131(8): 1795–1801
CrossRef
Google scholar
|
[91] |
Cui Y, Yue Y, Qian G,
CrossRef
Pubmed
Google scholar
|
[92] |
Kim J S, Rieter W J, Taylor K M L,
CrossRef
Pubmed
Google scholar
|
[93] |
Taylor K M L, Rieter W J, Lin W. Manganese-based nanoscale metal–organic frameworks for magnetic resonance imaging. Journal of the American Chemical Society, 2008, 130(44): 14358–14359
CrossRef
Pubmed
Google scholar
|
[94] |
Shang K X, Sun J, Hu D C,
CrossRef
Google scholar
|
[95] |
Della Rocca J, Lin W. Nanoscale metal–organic frameworks: magnetic resonance imaging contrast agents and beyond. European Journal of Inorganic Chemistry, 2010, 2010(24): 3725–3734
CrossRef
Google scholar
|
[96] |
Della Rocca J, Liu D, Lin W. Nanoscale metal–organic frameworks for biomedical imaging and drug delivery. Accounts of Chemical Research, 2011, 44(10): 957–968
CrossRef
Pubmed
Google scholar
|
[97] |
Ma Z, Moulton B. Recent advances of discrete coordination complexes and coordination polymers in drug delivery. Coordination Chemistry Reviews, 2011, 255(15–16): 1623–1641
CrossRef
Google scholar
|
[98] |
An J, Geib S J, Rosi N L. Cation-triggered drug release from a porous zinc-adeninate metal–organic framework. Journal of the American Chemical Society, 2009, 131(24): 8376–8377
CrossRef
Pubmed
Google scholar
|
[99] |
Leong W L, Vittal J J. One-dimensional coordination polymers: complexity and diversity in structures, properties, and applications. Chemical Reviews, 2011, 111(2): 688–764
CrossRef
Pubmed
Google scholar
|
[100] |
Vittal J J, Ng M T. Chemistry of metal thio- and selenocarbo-xylates: precursors for metal sulfide/selenide materials, thin films, and nanocrystals. Accounts of Chemical Research, 2006, 39(11): 869–877
CrossRef
Pubmed
Google scholar
|
[101] |
Masoomi M Y, Morsali A. Applications of metal–organic coordination polymers as precursors for preparation of nano-materials. Coordination Chemistry Reviews, 2012, 256(23–24): 2921–2943
CrossRef
Google scholar
|
[102] |
Meilikhov M, Yusenko K, Esken D,
CrossRef
Google scholar
|
[103] |
Jiang H L, Xu Q. Porous metal–organic frameworks as platforms for functional applications. Chemical Communications, 2011, 47(12): 3351–3370
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |