Construction of yolk--shell Fe3O4@C nanocubes for highly stable and efficient lithium-ion storage
Ruiping LIU , Chao ZHANG , Xiaofan ZHANG , Fei GUO , Yue DONG , Qi WANG , Hanqing ZHAO
Front. Mater. Sci. ›› 2018, Vol. 12 ›› Issue (4) : 361 -367.
Construction of yolk--shell Fe3O4@C nanocubes for highly stable and efficient lithium-ion storage
The yolk–shell Fe3O4@C nanocubes were successfully synthesized through carbothermic reduction process from carbon-coated α-Fe2O3 precursor. The results show that the yolk–shell Fe3O4@C nanocubes are uniformly coated with a thin carbon layer, and a clear cavity about 150 nm in width between Fe3O4 core and carbon shell are formed due to the volume shrinkage during the reduction treatment. The obtained yolk–shell Fe3O4@C nanocubes exhibit excellent cycling stability (the discharge capacity is 709.7 mA·h/g after 100 cycles at the current density of 0.1C) and rate performance (1023.4 mA·h/g at 0.1C, 932.5 mA·h/g at 0.2C, 756.1 mA·h/g at 0.5C, 405.6 mA·h/g at 1C, and 332.3 mA·h/g at 2C, and more importantly, when the current density finally backs to 0.1C, a capacity of 776.8 mA·h/g can be restored). The outstanding lithium storage properties may be attributed to the unique yolk–shell structures.
Fe 3O 4 / yolk--shell / nanocube / anode / lithium storage
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
/
| 〈 |
|
〉 |