Edge-oriented MoS2 aligned on cellular reduced graphene for enriched dye-sensitized solar cell photovoltaic efficiency
Infant RAJ , Daniel KIGEN , Wang YANG , Fan YANG , Yongfeng LI
Front. Mater. Sci. ›› 2018, Vol. 12 ›› Issue (4) : 368 -378.
Edge-oriented MoS2 aligned on cellular reduced graphene for enriched dye-sensitized solar cell photovoltaic efficiency
The counter electrode (CE) prominence in dye-sensitized solar cells (DSSCs) is undisputed with research geared towards replacement of Pt with viable substitutes with exceptional conductivity and catalytic activity. Herein, we report the replaceable CE with better performance than that of Pt-based electrode. The chemistry between the graphene oxide and ice templates leads to cellular formation of reduced graphene oxide that achieves greater conductivity to the CE. The simultaneous growth of active edge-oriented MoS2 on the CE through CVD possesses high reflectivity. High reflective MoS2 trends to increase the electroactivity by absorbing more photons from the source to dye molecules. Thus, the synergistic effect of two materials was found to showcase better photovoltaic performance of 7.6% against 7.3% for traditional platinum CE.
dye-sensitized solar cell / graphene oxide / molybdenum disulfide / counter electrode
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
/
| 〈 |
|
〉 |