The currently predominant Taylor principles should be disregarded in the study of plastic deformation of metals
Weimin MAO
The currently predominant Taylor principles should be disregarded in the study of plastic deformation of metals
The original Taylor principles offer identical intergranular strain equilibrium without stress equilibrium in metals during deformation. In reality, however, the stress and strain equilibria are maintained individually for different grains. As key points, the principles have become a prerequisite predominantly in the current theories, which unreasonably indicate that strains instead of stresses induce grain deformation despite reaching the stress equilibrium by complicated combinations of the activation of slip systems or other crystallographic mechanism via different approaches. Real intergranular equilibria can be traced if mechanical interactions together with the external loading are considered step by step. In this work, several penetrating and non-penetrating slips were used to obtain the necessary elastic and plastic strain tensors of different grains in a natural manner. Without the Taylor principles, the stress and strain equilibria can be reached naturally, simply, easily, reasonably, and individually without complicated calculations. Results of the experimental observation conformed with the predicted deformation texture when certain important engineering stress conditions are included in the simulation. Therefore, the Taylor principles for plastic deformation of polycrystalline metals should now be disregarded.
deformation / Taylor principles / stress equilibrium / strain equilibrium / texture
[1] |
Taylor G I. Plastic strain in metals. Journal of the Institute of Metals, 1938, 62: 307–324
|
[2] |
Lebensohn R A, Tomé C N, Castaňeda P P. Self-consistent modelling of the mechanical behaviour of viscoplastic polycrystals incorporating intragranular field fluctuations. Philosophical Magazine, 2007, 87(28): 4287–4322
CrossRef
Google scholar
|
[3] |
Van Houtte P, Li S, Seefeldt M,
CrossRef
Google scholar
|
[4] |
Crumbach M, Goerdeler M, Gottstein G. Modelling of recrystallization textures in aluminium alloys. Acta Materialia, 2006, 54: 3275–3306
CrossRef
Google scholar
|
[5] |
Hirshc J, Lücke K. Mechanism of deformation and development of rolling texture in polycrystalline fcc metals-II. Acta Metallurgica, 1988, 36: 2883–2904
|
[6] |
Mao W. Intergranular mechanical equilibrium during the rolling deformation of polycrystalline metals based on Taylor principles. Materials Science and Engineering A, 2016, 672: 129–134
CrossRef
Google scholar
|
[7] |
Sachs G.Zur Ableitung einer Fließbedingdung. Zeitschrift des Vereines deutscher Ingeniere, 1928, 72: 732‒736
|
[8] |
Mao W. Modeling of rolling texture in aluminum. Materials Science and Engineering A, 1998, 257(1): 171–177
CrossRef
Google scholar
|
[9] |
Mao W. On the Taylor principles for plastic deformation of polycrystalline metals. Frontiers of Materials Science, 2016, 10(4): 335–345
CrossRef
Google scholar
|
[10] |
Engler O, Crumbach M, Li S. Alloy-dependent rolling texture simulation of aluminium alloys with a grain-interaction model. Acta Materialia, 2005, 53(8): 2241–2257
CrossRef
Google scholar
|
[11] |
Truszkowski W, Król J, Major B. Inhomogeneity of rolling texture in fcc metals. Metallurgical Transactions A: Physical Metallurgy and Materials Science, 1980, 11(5): 749–758
CrossRef
Google scholar
|
/
〈 | 〉 |