Nitrogen--oxygen co-doped corrugation-like porous carbon for high performance supercapacitor
Wang YANG, Wu YANG, Lina KONG, Shuanlong DI, Xiujuan QIN
Nitrogen--oxygen co-doped corrugation-like porous carbon for high performance supercapacitor
Nitrogen–oxygen co-doped corrugation-like porous carbon (NO-PC) has been developed by direct pyrolysis of formaldehyde–melamine polymer containing manganese nitrate. The melamine, formaldehyde and manganese nitrate act as nitrogen, oxygen source and pore-foaming agent, respectively. NO-PC exhibits favorable porous architecture for efficient ion transfer and moderate heteroatom doping for additional pseudocapacitance, which synergistically enhances the electrochemical performance of the NO-PC-based supercapacitor. The electrode delivers specific capacitance of 240 F/g at 0.3 A/g when tested in 6 mol/L KOH electrolyte, good rate capability (capacitance retention of 83.3% at 5 A/g) as well as stable cycling performance (capacitance remains ~96% after 10000 cycles at 3 A/g). The facile synthesis with unique architecture and chemistry modification offers a promising candidate for electrode material of energy storage devices.
nitrogen--oxygen co-doping / porous carbon / supercapacitor
[1] |
Simon P, Gogotsi Y, Dunn B. Materials science. Where do batteries end and supercapacitors begin? Science, 2014, 343(6176): 1210–1211
CrossRef
Pubmed
Google scholar
|
[2] |
Wang Y, Song Y, Xia Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chemical Society Reviews, 2016, 45(21): 5925–5950
CrossRef
Pubmed
Google scholar
|
[3] |
Yan J,Wang Q, Wei T,
|
[4] |
Yang W, Yang W, Song A,
CrossRef
Google scholar
|
[5] |
Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 2009, 38(9): 2520–2531
CrossRef
Pubmed
Google scholar
|
[6] |
Huang P, Lethien C, Pinaud S,
CrossRef
Pubmed
Google scholar
|
[7] |
Yang W, Yang W, Song A,
|
[8] |
Yin B S, Zhang S W, Ren Q Q,
CrossRef
Google scholar
|
[9] |
Zhang S W, Yin B S, Liu C,
CrossRef
Google scholar
|
[10] |
Béguin F, Presser V, Balducci A,
CrossRef
Pubmed
Google scholar
|
[11] |
Wang J, Xin H L, Wang D. Recent progress on mesoporous carbon materials for advanced energy conversion and storage. Particle & Particle Systems Characterization, 2014, 31(5): 515–539
CrossRef
Google scholar
|
[12] |
Zhai Y, Dou Y, Zhao D,
CrossRef
Pubmed
Google scholar
|
[13] |
Luo H M, Chen H, Chen Y Z,
CrossRef
Google scholar
|
[14] |
Paraknowitsch J P, Thomas A. Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy & Environmental Science, 2013, 6(10): 2839–2855
CrossRef
Google scholar
|
[15] |
Kong L, Chen Q, Shen X,
CrossRef
Google scholar
|
[16] |
Zhao Y, Ran W, He J,
CrossRef
Pubmed
Google scholar
|
[17] |
Pu J, Li C, Tang L,
CrossRef
Google scholar
|
[18] |
Jeong H K, Jin M, Ra E J,
CrossRef
Pubmed
Google scholar
|
[19] |
Yang W, Yang W, Kong L,
CrossRef
Google scholar
|
[20] |
Wang W, Li J, Kang Y,
CrossRef
Google scholar
|
[21] |
Liu W J, Tian K, Ling L L,
CrossRef
Pubmed
Google scholar
|
[22] |
Yang W, Yang W, Song A,
CrossRef
Google scholar
|
[23] |
Zhou Y, Ma R, Candelaria S L,
CrossRef
Google scholar
|
[24] |
Cai J, Wu C, Zhu Y,
CrossRef
Google scholar
|
[25] |
Li Y, Wang G, Wei T,
CrossRef
Google scholar
|
[26] |
Su H, Zhang H, Liu F,
CrossRef
Google scholar
|
[27] |
Yang W, Yang W, Ding F,
CrossRef
Google scholar
|
[28] |
Jawhari T, Roid A, Casado J. Raman spectroscopic characterization of some commercially available carbon black materials. Carbon, 1995, 33(11): 1561–1565
CrossRef
Google scholar
|
[29] |
Thommes M, Kaneko K, Neimark A V,
|
[30] |
Li Z, Xu Z, Tan X,
CrossRef
Google scholar
|
[31] |
Chmiola J, Yushin G, Gogotsi Y,
CrossRef
Pubmed
Google scholar
|
[32] |
Chen L F, Zhang X D, Liang H W,
CrossRef
Pubmed
Google scholar
|
[33] |
Zhao Y, Huang S, Xia M,
CrossRef
Google scholar
|
[34] |
Zhang Y, Mori T, Ye J,
CrossRef
Pubmed
Google scholar
|
[35] |
Justin P, Meher S K, Rao G R. Tuning of capacitance behavior of NiO using anionic, cationic, and nonionic surfactants by hydrothermal synthesis. The Journal of Physical Chemistry C, 2010, 114(11): 5203–5210
CrossRef
Google scholar
|
[36] |
Saha D, Li Y, Bi Z,
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |