All-conjugated amphiphilic diblock copolymers for improving morphology and thermal stability of polymer/nanocrystals hybrid solar cells
Zhenrong JIA, Xuefeng XIA, Xiaofeng WANG, Tengyi WANG, Guiying XU, Bei LIU, Jitong ZHOU, Fan LI
All-conjugated amphiphilic diblock copolymers for improving morphology and thermal stability of polymer/nanocrystals hybrid solar cells
Herein, the ability to optimize the morphology and photovoltaic performance of poly(3-hexylthiophene) (P3HT)/ZnO hybrid bulk-heterojunction solar cells via introducing all-conjugated amphiphilic P3HT-based block copolymer (BCP), poly(3-hexylthiophene)-block-poly(3-triethylene glycol-thiophene) (P3HT-b-P3TEGT), as polymeric additives is demonstrated. The results show that the addition of P3HT-b-P3TEGT additives can effectively improve the compatibility between P3HT and ZnO nanocrystals, increase the crystalline and ordered packing of P3HT chains, and form optimized hybrid nanomorphology with stable and intimate hybrid interface. The improvement is ascribed to the P3HT-b-P3TEGT at the P3HT/ZnO interface that has strong coordination interactions between the TEG side chains and the polar surface of ZnO nanoparticles. All of these are favor of the efficient exciton dissociation, charge separation and transport, thereby, contributing to the improvement of the efficiency and thermal stability of solar cells. These observations indicate that introducing all-conjugated amphiphilic BCP additives can be a promising and effective protocol for high-performance hybrid solar cells.
hybrid solar cell / P3HT / ZnO / all-conjugated amphiphilic block copolymer / additive
[1] |
Huynh W U, Dittmer J J, Alivisatos A P. Hybrid nanorod-polymer solar cells. Science, 2002, 295(5564): 2425–2427
CrossRef
Pubmed
Google scholar
|
[2] |
Gao F, Ren S, Wang J. The renaissance of hybrid solar cells: progresses, challenges, and perspectives. Energy & Environmental Science, 2013, 6(7): 2020–2040
CrossRef
Google scholar
|
[3] |
Sun Y, Liu Z, Yuan J,
CrossRef
Google scholar
|
[4] |
Yue W, Wei F, Li Y,
CrossRef
Google scholar
|
[5] |
Giansante C, Mastria R, Lerario G,
CrossRef
Google scholar
|
[6] |
Li F, Shi Y, Yuan K,
CrossRef
Google scholar
|
[7] |
Liu Z, Sun Y, Yuan J,
CrossRef
Pubmed
Google scholar
|
[8] |
Chen Z, Zhang H, Du X,
CrossRef
Google scholar
|
[9] |
Im S H, Lim C S, Chang J A,
CrossRef
Pubmed
Google scholar
|
[10] |
Chang J A, Im S H, Lee Y H,
CrossRef
Pubmed
Google scholar
|
[11] |
Vohra V, Kawashima K, Kakara T,
CrossRef
Google scholar
|
[12] |
Chen Y, Ye P, Zhu Z G,
CrossRef
Pubmed
Google scholar
|
[13] |
Zhao W, Li S, Yao H,
CrossRef
Pubmed
Google scholar
|
[14] |
Giansante C, Infante I, Fabiano E,
CrossRef
Pubmed
Google scholar
|
[15] |
Zhao L, Pang X, Adhikary R,
CrossRef
Pubmed
Google scholar
|
[16] |
Jaimes W, Alvarado-Tenorio G, Martínez-Alonso C,
CrossRef
Google scholar
|
[17] |
Lewis E A, McNaughter P D, Yin Z,
CrossRef
Google scholar
|
[18] |
MacLachlan A J, Rath T, Cappel U B,
CrossRef
Pubmed
Google scholar
|
[19] |
Zhao L, Lin Z. Crafting semiconductor organic‒inorganic nanocomposites via placing conjugated polymers in intimate contact with nanocrystals for hybrid solar cells. Advanced Materials, 2012, 24(32): 4353–4368 doi:10.1002/adma.201201196
Pubmed
|
[20] |
Sun Y, Pitliya P, Liu C,
CrossRef
Google scholar
|
[21] |
Mitchell V D, Gann E, Huettner S,
CrossRef
Google scholar
|
[22] |
Zhu M, Kim H, Jang Y J,
CrossRef
Google scholar
|
[23] |
Li J H, Li Y, Xu J T,
CrossRef
Pubmed
Google scholar
|
[24] |
Yao S, Chen Z, Li F,
CrossRef
Pubmed
Google scholar
|
[25] |
Shi Y, Li F, Chen Y. Controlling morphology and improving the photovoltaic performances of P3HT/ZnO hybrid solar cells via P3HT-b-PEO as an interfacial compatibilizer. New Journal of Chemistry, 2013, 37(1): 236–244
CrossRef
Google scholar
|
[26] |
Lee E, Hammer B, Kim J K,
CrossRef
Pubmed
Google scholar
|
[27] |
Song I Y, Kim J, Im M J,
CrossRef
Google scholar
|
[28] |
Yamamoto T, Komarudin D, Arai M,
CrossRef
Google scholar
|
[29] |
Mena-Osteritz E, Meyer A, Langeveld-Voss B M W,
CrossRef
Google scholar
|
[30] |
Beek W J E, Wienk M M, Kemerink M,
CrossRef
Pubmed
Google scholar
|
[31] |
Jia Z, Wei Y, Wang X,
CrossRef
Google scholar
|
[32] |
Prosa T J, Winokur M J, Moulton J,
CrossRef
Google scholar
|
[33] |
Hu Z, Tang S, Ahlvers A,
CrossRef
Google scholar
|
[34] |
Salim T, Lee H W, Wong L H,
CrossRef
Google scholar
|
[35] |
Zhang L Y, Yin L W, Wang C X,
CrossRef
Google scholar
|
[36] |
Lai C H, Lee W F, Wu I C,
CrossRef
Google scholar
|
[37] |
Chien S C, Chen F C, Chung M K,
CrossRef
Google scholar
|
[38] |
Zhang S M, Guo Y L, Fan H J,
|
[39] |
Zhang Z G, Liu Y L, Yang Y,
CrossRef
Google scholar
|
[40] |
Meng L, Shang Y, Li Q,
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |