All-conjugated amphiphilic diblock copolymers for improving morphology and thermal stability of polymer/nanocrystals hybrid solar cells

Zhenrong JIA , Xuefeng XIA , Xiaofeng WANG , Tengyi WANG , Guiying XU , Bei LIU , Jitong ZHOU , Fan LI

Front. Mater. Sci. ›› 2018, Vol. 12 ›› Issue (3) : 225 -238.

PDF (779KB)
Front. Mater. Sci. ›› 2018, Vol. 12 ›› Issue (3) : 225 -238. DOI: 10.1007/s11706-018-0428-x
RESEARCH ARTICLE
RESEARCH ARTICLE

All-conjugated amphiphilic diblock copolymers for improving morphology and thermal stability of polymer/nanocrystals hybrid solar cells

Author information +
History +
PDF (779KB)

Abstract

Herein, the ability to optimize the morphology and photovoltaic performance of poly(3-hexylthiophene) (P3HT)/ZnO hybrid bulk-heterojunction solar cells via introducing all-conjugated amphiphilic P3HT-based block copolymer (BCP), poly(3-hexylthiophene)-block-poly(3-triethylene glycol-thiophene) (P3HT-b-P3TEGT), as polymeric additives is demonstrated. The results show that the addition of P3HT-b-P3TEGT additives can effectively improve the compatibility between P3HT and ZnO nanocrystals, increase the crystalline and ordered packing of P3HT chains, and form optimized hybrid nanomorphology with stable and intimate hybrid interface. The improvement is ascribed to the P3HT-b-P3TEGT at the P3HT/ZnO interface that has strong coordination interactions between the TEG side chains and the polar surface of ZnO nanoparticles. All of these are favor of the efficient exciton dissociation, charge separation and transport, thereby, contributing to the improvement of the efficiency and thermal stability of solar cells. These observations indicate that introducing all-conjugated amphiphilic BCP additives can be a promising and effective protocol for high-performance hybrid solar cells.

Keywords

hybrid solar cell / P3HT / ZnO / all-conjugated amphiphilic block copolymer / additive

Cite this article

Download citation ▾
Zhenrong JIA, Xuefeng XIA, Xiaofeng WANG, Tengyi WANG, Guiying XU, Bei LIU, Jitong ZHOU, Fan LI. All-conjugated amphiphilic diblock copolymers for improving morphology and thermal stability of polymer/nanocrystals hybrid solar cells. Front. Mater. Sci., 2018, 12(3): 225-238 DOI:10.1007/s11706-018-0428-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Huynh W U, Dittmer J J, Alivisatos A P. Hybrid nanorod-polymer solar cells. Science, 2002, 295(5564): 2425–2427

[2]

Gao F, Ren S, Wang J. The renaissance of hybrid solar cells: progresses, challenges, and perspectives. Energy & Environmental Science, 2013, 6(7): 2020–2040

[3]

Sun Y, Liu Z, Yuan J, . Polymer selection toward efficient polymer/PbSe planar heterojunction hybrid solar cells. Organic Electronics, 2015, 24: 263–271

[4]

Yue W, Wei F, Li Y, . Hierarchical CuInS2 synthesized with the induction of histidine for polymer/CuInS2 solar cells. Materials Science in Semiconductor Processing, 2018, 76: 14–24

[5]

Giansante C, Mastria R, Lerario G, . Molecular-level switching of polymer/nanocrystal non-covalent interactions and application in hybrid solar cells. Advanced Functional Materials, 2015, 25(1): 111–119

[6]

Li F, Shi Y, Yuan K, . Fine dispersion and self-assembly of ZnO nanoparticles driven by P3HT-b-PEO diblocks for improvement of hybrid solar cells performance. New Journal of Chemistry, 2013, 37(1): 195–203

[7]

Liu Z, Sun Y, Yuan J, . High-efficiency hybrid solar cells based on polymer/PbSxSe1−x nanocrystals benefiting from vertical phase segregation. Advanced Materials, 2013, 25(40): 5772–5778

[8]

Chen Z, Zhang H, Du X, . From planar-herterojunction to n-i structure: An efficient strategy to improve short-circuit current and power conversion efficiency of aqueous-solution-processed hybrid solar cells. Energy & Environmental Science, 2013, 6(5): 1597–1603

[9]

Im S H, Lim C S, Chang J A, . Toward interaction of sensitizer and functional moieties in hole-transporting materials for efficient semiconductor-sensitized solar cells. Nano Letters, 2011, 11(11): 4789–4793

[10]

Chang J A, Im S H, Lee Y H, . Panchromatic photon-harvesting by hole-conducting materials in inorganic‒organic heterojunction sensitized-solar cell through the formation of nanostructured electron channels. Nano Letters, 2012, 12(4): 1863–1867

[11]

Vohra V, Kawashima K, Kakara T, . Efficient inverted polymer solar cells employing favourable molecular orientation. Nature Photonics, 2015, 9(6): 403–408

[12]

Chen Y, Ye P, Zhu Z G, . Achieving high-performance ternary organic solar cells through tuning acceptor alloy. Advanced Materials, 2017, 29(6): 1603154

[13]

Zhao W, Li S, Yao H, . Molecular optimization enables over 13% efficiency in organic solar cells. Journal of the American Chemical Society, 2017, 139(21): 7148–7151

[14]

Giansante C, Infante I, Fabiano E, . “Darker-than-black” PbS quantum dots: enhancing optical absorption of colloidal semiconductor nanocrystals via short conjugated ligands. Journal of the American Chemical Society, 2015, 137(5): 1875–1886

[15]

Zhao L, Pang X, Adhikary R, . Semiconductor anisotropic nanocomposites obtained by directly coupling conjugated polymers with quantum rods. Angewandte Chemie International Edition, 2011, 50(17): 3958–3962

[16]

Jaimes W, Alvarado-Tenorio G, Martínez-Alonso C, . Effect of CdS nanoparticle content on the in-situ polymerization of 3-hexylthiophene-2,5-diyl and the application of P3HT-CdS products in hybrid solar cells. Materials Science in Semiconductor Processing, 2015, 37: 259–265

[17]

Lewis E A, McNaughter P D, Yin Z, . In situ synthesis of PbS nanocrystals in polymer thin films from lead(II) xanthate and dithiocarbamate complexes: evidence for size and morphology control. Chemistry of Materials, 2015, 27(6): 2127–2136

[18]

MacLachlan A J, Rath T, Cappel U B, . Polymer/nanocrystal hybrid solar cells: influence of molecular precursor design on film nanomorphology, charge generation and device performance. Advanced Functional Materials, 2015, 25(3): 409–420

[19]

Zhao L, Lin Z. Crafting semiconductor organic‒inorganic nanocomposites via placing conjugated polymers in intimate contact with nanocrystals for hybrid solar cells. Advanced Materials, 2012, 24(32): 4353–4368 doi:10.1002/adma.201201196

[20]

Sun Y, Pitliya P, Liu C, . Block copolymer compatibilized polymer: fullerene blend morphology and properties. Polymer, 2017, 113: 135–146

[21]

Mitchell V D, Gann E, Huettner S, . Morphological and device evaluation of an amphiphilic block copolymer for organic photovoltaic applications. Macromolecules, 2017, 50(13): 4942–4951

[22]

Zhu M, Kim H, Jang Y J, . Toward high efficiency organic photovoltaic devices with enhanced thermal stability utilizing P3HT-b-P3PHT block copolymer additives. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(47): 18432–18443

[23]

Li J H, Li Y, Xu J T, . Self-assembled amphiphilic block copolymers/CdTe nanocrystals for efficient aqueous-processed hybrid solar cells. ACS Applied Materials & Interfaces, 2017, 9(21): 17942–17948

[24]

Yao S, Chen Z, Li F, . High-efficiency aqueous-solution-processed hybrid solar cells based on P3HT dots and CdTe nanocrystals. ACS Applied Materials & Interfaces, 2015, 7(13): 7146–7152

[25]

Shi Y, Li F, Chen Y. Controlling morphology and improving the photovoltaic performances of P3HT/ZnO hybrid solar cells via P3HT-b-PEO as an interfacial compatibilizer. New Journal of Chemistry, 2013, 37(1): 236–244

[26]

Lee E, Hammer B, Kim J K, . Hierarchical helical assembly of conjugated poly(3-hexylthiophene)-block-poly(3-triethylene glycol thiophene) diblock copolymers. Journal of the American Chemical Society, 2011, 133(27): 10390–10393

[27]

Song I Y, Kim J, Im M J, . Synthesis and self-assembly of thiophene-based all-conjugated amphiphilic diblock copolymers with a narrow molecular weight distribution. Macromolecules, 2012, 45(12): 5058–5068

[28]

Yamamoto T, Komarudin D, Arai M, . Extensive studies on π-stacking of poly(3-alkylthiophene-2,5-diyl)s and poly(4-alkylthiazole-2,5-diyl)s by optical spectroscopy, NMR analysis, light scattering analysis, and X-ray crystallography. Journal of the American Chemical Society, 1998, 120(9): 2047–2058

[29]

Mena-Osteritz E, Meyer A, Langeveld-Voss B M W, . Two-dimensional crystals of poly(3-alkyl-thiophene)s: direct visualization of polymer folds in submolecular resolution. Angewandte Chemie International Edition, 2000, 112(15): 2791–2796

[30]

Beek W J E, Wienk M M, Kemerink M, . Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells. The Journal of Physical Chemistry B, 2005, 109(19): 9505–9516

[31]

Jia Z, Wei Y, Wang X, . Improvement of morphology and performance of P3HT/ZnO hybrid solar cells induced by liquid crystal molecules. Chemical Physics Letters, 2016, 661: 119–124

[32]

Prosa T J, Winokur M J, Moulton J, . X-ray structural studies of poly(3-alkylthiophenes): an example of an inverse comb. Macromolecules, 1992, 25(17): 4364–4372

[33]

Hu Z, Tang S, Ahlvers A, . Near-infrared photoresponse sensitization of solvent additive processed poly(3-hexylthiophene)/fullerene solar cells by a low band gap polymer. Applied Physics Letters, 2012, 101(5): 053308

[34]

Salim T, Lee H W, Wong L H, . Semiconducting carbon nanotubes for improved efficiency and thermal stability of polymer‒fullerene solar cells. Advanced Functional Materials, 2016, 26(1): 51–65

[35]

Zhang L Y, Yin L W, Wang C X, . Origin of visible photoluminescence of ZnO quantum dots: defect-dependent and size-dependent. The Journal of Physical Chemistry C, 2010, 114(21): 9651–9658

[36]

Lai C H, Lee W F, Wu I C, . Highly luminescent, homogeneous ZnO nanoparticles synthesized via semiconductive polyalkyloxylthiophene template. Journal of Materials Chemistry, 2009, 19(39): 7284–7289

[37]

Chien S C, Chen F C, Chung M K, . Self-assembled poly(ethylene glycol) buffer layers in polymer solar cells: toward superior stability and efficiency. The Journal of Physical Chemistry C, 2012, 116(1): 1354–1360

[38]

Zhang S M, Guo Y L, Fan H J, . Low bandgap π-conjugated copolymers based on fused thiophenes and benzothiadiazole: Synthesis and structure‒property relationship study. Journal of Polymer Science Part A: Polymer Chemistry, 2009, 47(20): 5498–5508 doi:10.1002/pola.23601

[39]

Zhang Z G, Liu Y L, Yang Y, . Alternating copolymers of carbazole and triphenylamine with conjugated side chain attaching acceptor groups synthesis and photovoltaic application. Macromolecules, 2010, 43(22): 9376–9383

[40]

Meng L, Shang Y, Li Q, . Dynamic Monte Carlo simulation for highly efficient polymer blend photovoltaics. The Journal of Physical Chemistry B, 2010, 114(1): 36–41

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (779KB)

1164

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/