Catalytically enhanced thin and uniform TaS2 nanosheets for hydrogen evolution reaction

Infant RAJ , Yongli DUAN , Daniel KIGEN , Wang YANG , Liqiang HOU , Fan YANG , Yongfeng LI

Front. Mater. Sci. ›› 2018, Vol. 12 ›› Issue (3) : 239 -246.

PDF (380KB)
Front. Mater. Sci. ›› 2018, Vol. 12 ›› Issue (3) : 239 -246. DOI: 10.1007/s11706-018-0425-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Catalytically enhanced thin and uniform TaS2 nanosheets for hydrogen evolution reaction

Author information +
History +
PDF (380KB)

Abstract

Though the transition-metal dichalcogenides (TMDs) were proven to have a better performance on the hydrogen evolution reaction (HER), the bulk production of active TMD materials remains a challenging work. This report overcomes those barriers by showing a simple procedure to synthesize TaS2 nanosheets through modifying the arc discharge process. The usage of chloride as the transporting agent reduces the growth period of the formed TaS2 with active edge sites. TaS2 is found to have a uniform thickness (4 nm) with high crystallinity and adopt a 2H polytype (double-layered hexagonal) structure. The as-synthesized TaS2 has superior activity for HER with the potential of 280 mV.

Keywords

hydrogen evolution reaction / TaS 2 nanosheets / arc disharge / active edge sites

Cite this article

Download citation ▾
Infant RAJ, Yongli DUAN, Daniel KIGEN, Wang YANG, Liqiang HOU, Fan YANG, Yongfeng LI. Catalytically enhanced thin and uniform TaS2 nanosheets for hydrogen evolution reaction. Front. Mater. Sci., 2018, 12(3): 239-246 DOI:10.1007/s11706-018-0425-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Novoselov K S, Geim A K, Morozov S V, . Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669

[2]

Zhu Y, Murali S, Cai W, . Graphene and graphene oxide: synthesis, properties, and applications. Advanced Materials, 2010, 22(35): 3906–3924

[3]

Balandin A A. Thermal properties of graphene and nanostructured carbon materials. Nature Materials, 2011, 10(8): 569–581

[4]

Meric I, Han M Y, Young A F, . Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nature Nanotechnology, 2008, 3(11): 654–659

[5]

Zhang H. Ultrathin two-dimensional nanomaterials. ACS Nano, 2015, 9(10): 9451–9469

[6]

Zeng Z Y, Tan C L, Huang X, . Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction. Energy & Environmental Science, 2014, 7(2): 797–803

[7]

Wu J J, Liu M J, Chatterjee K, . Exfoliated 2D transition metal disulfides for enhanced electrocatalysis of oxygen evolution reaction in acidic medium. Advanced Materials Interfaces, 2016, 3(9): 1500669

[8]

Radisavljevic B, Radenovic A, Brivio J, . Single-layer MoS2 transistors. Nature Nanotechnology, 2011, 6(3): 147–150

[9]

Raj S I, Xu X W, Yang W, . Highly active and reflective MoS2 counter electrode for enhancement of photovoltaic efficiency of dye sensitized solar cells. Electrochimica Acta, 2016, 212: 614–620

[10]

Liu C, Kong D, Hsu P C, . Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nature Nanotechnology, 2016, 11(12): 1098–1104

[11]

Tan C, Zeng Z, Huang X, . Liquid-phase epitaxial growth of two-dimensional semiconductor hetero-nanostructures. Angewandte Chemie International Edition in English, 2015, 54(6): 1841–1845

[12]

Zhang X, Lai Z, Liu Z, . A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots. Angewandte Chemie International Edition in English, 2015, 54(18): 5425–5428

[13]

Lee Y H, Zhang X Q, Zhang W, . Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Advanced Materials, 2012, 24(17): 2320–2325

[14]

Muratore C, Hu J J, Wang B, . Continuous ultra-thin MoS2 films grown by low-temperature physical vapor deposition. Applied Physics Letters, 2014, 104(26): 261604

[15]

Etzkorn J, Therese H A, Rocker F, . Metal-organic chemical vapor deposition synthesis of hollow inorganic-fullerene-type MoS2 and MoSe2 nanoparticles. Advanced Materials, 2005, 17(19): 2372–2375

[16]

Nath M, Rao C N R. New metal disulfide nanotubes. Journal of the American Chemical Society, 2001, 123(20): 4841–4842

[17]

Dunnill C W, MacLaren I, Gregory D H. Superconducting tantalum disulfide nanotapes; growth, structure and stoichiometry. Nanoscale, 2010, 2(1): 90–97

[18]

Li P, Stender C L, Ringe E, . Synthesis of TaS2 nanotubes from Ta2O5 nanotube templates. Small, 2010, 6(10): 1096–1099

[19]

Yu Y, Yang F, Lu X F, . Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nature Nanotechnology, 2015, 10(3): 270–276

[20]

Schuffenhauer C, Parkinson B A, Jin-Phillipp N Y, . Synthesis of fullerene-like tantalum disulfide nanoparticles by a gas-phase reaction and laser ablation. Small, 2005, 1(11): 1100–1109

[21]

Park K Y, Kim H J, Suh Y J. Preparation of tantalum nanopowders through hydrogen reduction of TaCl5 vapor. Powder Technology, 2007, 172(3): 144–148

[22]

Sun G, Liu J, Zhang X, . Fabrication of ultralong hybrid microfibers from nanosheets of reduced graphene oxide and transition-metal dichalcogenides and their application as supercapacitors. Angewandte Chemie International Edition, 2014, 53(46): 12576–12580

[23]

Wu X C, Tao Y R, Gao Q X. Fabrication of TaS2 nanobelt arrays and their enhanced field-emission. Chemical Communications, 2009, 40(40): 6008–6010

[24]

Wu X C, Tao Y R, Gao Q X, . Superconducting TaS2−xIy hierarchical nanostructures. Chemical Communications, 2009, 28(28): 4290–4292

[25]

Ubaldini A, Jacimovic J, Ubrig N, . Chloride-driven chemical vapor transport method for crystal growth of transition metal dichalcogenides. Crystal Growth & Design, 2013, 13(10): 4453–4459

[26]

Li P, Stender C L, Ringe E, . Synthesis of TaS2 nanotubes from Ta2O5 nanotube templates. Small, 2010, 6(10): 1096–1099

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (380KB)

1144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/