Facile synthesis of perfect ZnSn(OH)6 octahedral microcrystallines with controlled size and high sensing performance towards ethanol
Shaoming SHU , Chao WANG , Shantang LIU
Front. Mater. Sci. ›› 2018, Vol. 12 ›› Issue (2) : 176 -183.
Facile synthesis of perfect ZnSn(OH)6 octahedral microcrystallines with controlled size and high sensing performance towards ethanol
Uniform and monodisperse ZnSn(OH)6 perfect octahedrons have been synthesized by a facile coprecipitation reaction process. The particle size of the as-prepared ZnSn(OH)6 octahedral structure can be readily controlled by adjusting the reaction temperature (T), the side length of ZnSn(OH)6 octahedrons tailored from 3 µm (40°C) to 4 µm (60°C) and 5 µm (80°C). The ethanol sensing properties of the ZnSn(OH)6 octahedrons were carefully investigated. The gas sensing experimental data show that the sensor based on ZnSn(OH)6 (40°C) show good selectivity, fast response/recovery time and the highest response (Ra/Rg = 23.8) to 200 ppm ethanol at relatively low optimum operating temperature (200°C) among sensors based on ZnSn(OH)6 (60°C) and ZnSn(OH)6 (80°C), which might result from different specific surface areas. The study demonstrated that perfect octahedral ZnSn(OH)6 with controlled crystalline size and desirable sensing performance can be synthesized with a simple fabrication procedure, and the octahedral ZnSn(OH)6 could be a highly promising material for high-performance sensors.
ZnSn(OH) 6 / octahedron / gas sensor / ethanol
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
/
| 〈 |
|
〉 |