
A general synthesis strategy for the multifunctional 3D polypyrrole foam of thin 2D nanosheets
Jiangli XUE, Maosong MO, Zhuming LIU, Dapeng YE, Zhihua CHENG, Tong XU, Liangti QU
Front. Mater. Sci. ›› 2018, Vol. 12 ›› Issue (2) : 105-117.
A general synthesis strategy for the multifunctional 3D polypyrrole foam of thin 2D nanosheets
A 3D macroporous conductive polymer foam of thin 2D polypyrrole (PPy) nanosheets is developed by adopting a novel intercalation of guest (monomer Py) between the layers of the lamellar host (3D vanadium oxide foam) template-replication strategy. The 3D PPy foam of thin 2D nanosheets exhibits diverse functions including reversible compressibility, shape memory, absorption/adsorption and mechanically deformable supercapacitor characteristics. The as-prepared 3D PPy foam of thin nanosheets is highly light weight with a density of 12 mg·cm−3 which can bear the large compressive strain up to 80% whether in wet or dry states; and can absorb organic solutions or extract dye molecules fast and efficiently. In particular, the PPy nanosheet-based foam as a mechanically deformable electrode material for supercapacitors exhibits high specific capacitance of 70 F·g−1 at a fast charge–discharge rate of 50 mA·g−1, superior to that of any other typical pure PPy-based capacitor. We envision that the strategy presented here should be applicable to fabrication of a wide variety of organic polymer foams and hydrogels of low-dimensional nanostructures and even inorganic foams and hydrogels of low-dimensional nanostructures, and thus allow for exploration of their advanced physical and chemical properties.
intercalation polymerization / polypyrrole / nanosheet / supercapacitor / foam / multifunctionality
[1] |
Lu A H, Schüth F. Nanocasting: A versatile strategy for creating nanostructured porous materials. Advanced Materials, 2006, 18(14): 1793–1805
CrossRef
Google scholar
|
[2] |
Davis M E. Ordered porous materials for emerging applications. Nature, 2002, 417(6891): 813–821
CrossRef
Pubmed
Google scholar
|
[3] |
Schaedler T A, Jacobsen A J, Torrents A,
CrossRef
Pubmed
Google scholar
|
[4] |
Zheng X, Lee H, Weisgraber T H,
CrossRef
Pubmed
Google scholar
|
[5] |
Sun H, Xu Z, Gao C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Advanced Materials, 2013, 25(18): 2554–2560
CrossRef
Pubmed
Google scholar
|
[6] |
Kistler S S. Coherent expanded aerogels and jellies. Nature, 1931, 127(3211): 741
CrossRef
Google scholar
|
[7] |
Tillotson T M, Hrubesh L W. Transparent ultralow-density silica aerogels prepared by a two-step sol‒gel process. Journal of Non-Crystalline Solids, 1992, 145: 44–50
CrossRef
Google scholar
|
[8] |
Tappan B C, Huynh M H, Hiskey M A,
CrossRef
Pubmed
Google scholar
|
[9] |
Verdooren A, Chan H M, Grenestedt J L,
CrossRef
Google scholar
|
[10] |
Zou J, Liu J, Karakoti A S,
CrossRef
Pubmed
Google scholar
|
[11] |
Zhao Y, Hu C, Hu Y,
CrossRef
Pubmed
Google scholar
|
[12] |
Wang C, Ding Y, Yuan Y,
CrossRef
Pubmed
Google scholar
|
[13] |
Novoselov K S, Geim A K, Morozov S V,
CrossRef
Pubmed
Google scholar
|
[14] |
Xu Y, Sheng K, Li C,
CrossRef
Pubmed
Google scholar
|
[15] |
Lee H S, Min S W, Chang Y G,
CrossRef
Pubmed
Google scholar
|
[16] |
Zhu J, Cao L, Wu Y,
CrossRef
Pubmed
Google scholar
|
[17] |
Shi Y, Peng L, Ding Y,
CrossRef
Pubmed
Google scholar
|
[18] |
Yang Y L, Gupta M C, Dudley K L,
CrossRef
Google scholar
|
[19] |
Liu J, Wang Z, Zhao Y,
CrossRef
Pubmed
Google scholar
|
[20] |
Xie P, Rong M Z, Zhang M Q. Moisture battery formed by direct contact of magnesium with foamed polyaniline. Angewandte Chemie International Edition, 2016, 55(5): 1805–1809
CrossRef
Pubmed
Google scholar
|
[21] |
Xie A, Wu F, Jiang W,
CrossRef
Google scholar
|
[22] |
Berdichevsky Y, Lo Y H. Polypyrrole nanowire actuators. Advanced Materials, 2006, 18(1): 122–125
CrossRef
Google scholar
|
[23] |
Yang X, Lin Z, Zheng J,
CrossRef
Pubmed
Google scholar
|
[24] |
Liu S, Gordiichuk P, Wu Z S,
CrossRef
Pubmed
Google scholar
|
[25] |
Mahmoudian M R, Alias Y, Basirun W J,
CrossRef
Google scholar
|
[26] |
Xue J L, Zhao F, Hu C G,
CrossRef
Google scholar
|
[27] |
Xue J, Hu C, Lv L,
CrossRef
Pubmed
Google scholar
|
[28] |
Wang L, Schindler J, Thomas J A,
CrossRef
Google scholar
|
[29] |
Tang H, Wang J, Yin H,
CrossRef
Pubmed
Google scholar
|
[30] |
Liu W, Xu S, Guan S,
CrossRef
Pubmed
Google scholar
|
[31] |
Gao R, Yan D. Layered host-guest long-afterglow ultrathin nanosheets: high-efficiency phosphorescence energy transfer at 2D confined interface. Chemical Science, 2017, 8(1): 590–599
CrossRef
Pubmed
Google scholar
|
[32] |
Li B, Gu Z, Kurniawan N,
CrossRef
Pubmed
Google scholar
|
[33] |
Zhao Y, Liu J, Hu Y,
CrossRef
Pubmed
Google scholar
|
[34] |
Si Y, Yu J, Tang X,
CrossRef
Pubmed
Google scholar
|
[35] |
Kim K H, Oh Y, Islam M F. Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue. Nature Nanotechnology, 2012, 7(9): 562–566
CrossRef
Pubmed
Google scholar
|
[36] |
Worsley M A, Kucheyev S O, Mason H E,
CrossRef
Pubmed
Google scholar
|
[37] |
Tang Z, Shen S, Zhuang J,
CrossRef
Pubmed
Google scholar
|
[38] |
Schiavon G, Zotti G, Comisso N,
CrossRef
Google scholar
|
[39] |
Cong H P, Ren X C, Wang P,
CrossRef
Pubmed
Google scholar
|
[40] |
Niu Z, Chen J, Hng H H,
CrossRef
Pubmed
Google scholar
|
[41] |
Gui X, Wei J, Wang K,
CrossRef
Pubmed
Google scholar
|
[42] |
Lillo-Ródenas M A, Cazorla-Amorós D, Linares-Solano A. Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations. Carbon, 2005, 43(8): 1758–1767
CrossRef
Google scholar
|
[43] |
Li S, Tian S, Feng Y,
CrossRef
Pubmed
Google scholar
|
[44] |
Du C, Yeh J, Pan N. High power density supercapacitors using locally aligned carbon nanotube electrodes. Nanotechnology, 2005, 16(4): 350–353
CrossRef
Google scholar
|
[45] |
Du C, Pan N. Supercapacitors using carbon nanotubes films by electrophoretic deposition. Journal of Power Sources, 2006, 160(2): 1487–1494
CrossRef
Google scholar
|
[46] |
Bao L, Li X. Towards textile energy storage from cotton T-shirts. Advanced Materials, 2012, 24(24): 3246–3252
CrossRef
Pubmed
Google scholar
|
[47] |
Taberna P L, Simon P, Fauvarque J F. Electrochemical characteristics and impedance spectroscopy studies of carbon‒carbon supercapacitors. Journal of the Electrochemical Society, 2003, 150(3): A292–A300
CrossRef
Google scholar
|
[48] |
Niu Z, Dong H, Zhu B,
CrossRef
Pubmed
Google scholar
|
[49] |
Sung J H, Kim S J, Lee K H. Fabrication of microcapacitors using conducting polymer microelectrodes. Journal of Power Sources, 2003, 124(1): 343–350
CrossRef
Google scholar
|
[50] |
Sung J H, Kim S J, Lee K H. Fabrication of all-solid-state electrochemical microcapacitors. Journal of Power Sources, 2004, 133(2): 312–319
CrossRef
Google scholar
|
[51] |
Sung J H, Kim S J, Jeong S H,
CrossRef
Google scholar
|
[52] |
Dubal D P, Lee S H, Kim J G,
CrossRef
Google scholar
|
[53] |
Xue J, Zhao Y, Cheng H,
CrossRef
Pubmed
Google scholar
|
/
〈 |
|
〉 |