Plasmon-enhanced solar water splitting with metal oxide nanostructures: A brief overview of recent trends
Timur Sh. ATABAEV
Plasmon-enhanced solar water splitting with metal oxide nanostructures: A brief overview of recent trends
In the last decade, the surface plasmon resonance-enhanced solar water splitting (SWS) has been actively investigated for improved hydrogen production. In this mini-review, we briefly introduce the mechanisms for plasmon-enhanced SWS and then review some representative studies related to these mechanisms. In addition, we also briefly discuss how metal oxide geometry affects the SWS activity in combined metal--semiconductor nanostructures. Finally, we summarize the recent discoveries and proposed a future vision for plasmon-enhanced SWS with metal oxide nanostructures.
surface plasmon resonance / solar water splitting / nanostructures / noble metals / metal oxides
[1] |
Tachibana Y, Vayssieres L, Durrant J R. Artificial photosynthesis for solar water-splitting. Nature Photonics, 2012, 6(8): 511–518
CrossRef
Google scholar
|
[2] |
Atabaev T S, Ajmal M, Hong N H,
CrossRef
Google scholar
|
[3] |
Ahmad H, Kamarudin S K, Minggu L J,
CrossRef
Google scholar
|
[4] |
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38
CrossRef
Pubmed
Google scholar
|
[5] |
Atabaev T S, Vu H H T, Ajmal M,
CrossRef
Google scholar
|
[6] |
Walter M G, Warren E L, McKone J R,
CrossRef
Pubmed
Google scholar
|
[7] |
Tamirat A G, Rick J, Dubale A A,
CrossRef
Google scholar
|
[8] |
Chen S, Thind S S, Chen A. Nanostructured materials for water splitting-state of the art and future needs: A mini-review. Electrochemistry Communications, 2016, 63: 10–17
CrossRef
Google scholar
|
[9] |
Wolcott A, Smith W A, Kuykendall T R,
CrossRef
Pubmed
Google scholar
|
[10] |
Wagner F T, Somorjai G A. Photocatalytic and photoelectrochemical hydrogen production on strontium titanate single crystals. Journal of the American Chemical Society, 1980, 102(17): 5494–5502
CrossRef
Google scholar
|
[11] |
Formal F L, Gratzel M, Sivula K. Controlling photoactivity in ultrathin hematite films for solar water-splitting. Advanced Functional Materials, 2010, 20(7): 1099–1107
CrossRef
Google scholar
|
[12] |
Thuy T N T, Atabaev T S, Vu H H T,
CrossRef
Google scholar
|
[13] |
Wang J, Du C, Peng Q,
CrossRef
Google scholar
|
[14] |
Tsege E L, Atabaev T S, Hossain M A,
CrossRef
Google scholar
|
[15] |
Atabaev T S, Lee D H, Hong N H. Fabrication of TiO2/CuO photoelectrode with enhanced solar water splitting activity. Functional Materials Letters, 2017, 10(06): 1750084
CrossRef
Google scholar
|
[16] |
Yu J, Hai Y, Cheng B. Enhanced photocatalytic H2-production activity of TiO2 by Ni(OH)2 cluster modification. The Journal of Physical Chemistry C, 2011, 115(11): 4953–4958
CrossRef
Google scholar
|
[17] |
Xu F, Mei J, Zheng M,
CrossRef
Google scholar
|
[18] |
Atabaev T S, Atabaev S. Titania coated hematite nanostructures for solar water splitting applications. Nano Life, 2016, 6(2): 1650008
CrossRef
Google scholar
|
[19] |
Warren S C, Thimsen E. Plasmonic solar water splitting. Energy & Environmental Science, 2012, 5(1): 5133–5146
CrossRef
Google scholar
|
[20] |
Atabaev T S, Hossain M A, Lee D,
CrossRef
Google scholar
|
[21] |
Ye W, Long R, Huang H,
CrossRef
Google scholar
|
[22] |
Hartland G V. Optical studies of dynamics in noble metal nanostructures. Chemical Reviews, 2011, 111(6): 3858–3887
CrossRef
Pubmed
Google scholar
|
[23] |
Atwater H A, Polman A. Plasmonics for improved photovoltaic devices. Nature Materials, 2010, 9(3): 205–213
CrossRef
Pubmed
Google scholar
|
[24] |
Link S, El-Sayed M A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. The Journal of Physical Chemistry B, 1999, 103(21): 4212–4217
CrossRef
Google scholar
|
[25] |
Huang T, Xu X H N. Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using single-nanoparticle plasmonic microscopy and spectroscopy. Journal of Materials Chemistry, 2010, 20(44): 9867–9876
CrossRef
Pubmed
Google scholar
|
[26] |
López-Lozano X, Barron H, Mottet C,
CrossRef
Pubmed
Google scholar
|
[27] |
Zhang P, Wang T, Gong J. Mechanistic understanding of the plasmonic enhancement for solar water splitting. Advanced Materials, 2015, 27(36): 5328–5342
CrossRef
Pubmed
Google scholar
|
[28] |
Ingram D B, Linic S. Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. Journal of the American Chemical Society, 2011, 133(14): 5202–5205
CrossRef
Pubmed
Google scholar
|
[29] |
Zhang Q, Thrithamarassery Gangadharan D, Liu Y,
CrossRef
Google scholar
|
[30] |
Cushing S K, Li J, Meng F,
CrossRef
Pubmed
Google scholar
|
[31] |
Christopher P, Ingram D B, Linic S. Enhancing photochemical activity of semiconductor nanoparticles with optically active Ag nanostructures: Photochemistry mediated by Ag surface plasmons. The Journal of Physical Chemistry C, 2010, 114(19): 9173–9177
CrossRef
Google scholar
|
[32] |
Jain P K, Lee K S, El-Sayed I H,
CrossRef
Pubmed
Google scholar
|
[33] |
Pala R A, White J, Barnard E,
CrossRef
Google scholar
|
[34] |
Govorov A O, Zhang H, Demir H V,
CrossRef
Google scholar
|
[35] |
Besteiro L V, Govorov A O. Amplified generation of hot electrons and quantum surface effects in nanoparticle dimers with plasmonic hot spots. The Journal of Physical Chemistry C, 2016, 120(34): 19329–19339
CrossRef
Google scholar
|
[36] |
Zhang H, Govorov A O. Optical generation of hot plasmonic carriers in metal nanocrystals: The effects of shape and field enhancement. The Journal of Physical Chemistry C, 2014, 118(14): 7606–7614
CrossRef
Google scholar
|
[37] |
Pu Y C, Wang G, Chang K D,
CrossRef
Pubmed
Google scholar
|
[38] |
Chen K, Feng X, Hu R,
CrossRef
Google scholar
|
[39] |
Zhang Z, Zhang L, Hedhili M N,
CrossRef
Pubmed
Google scholar
|
[40] |
Peng C, Wang W, Zhang W,
CrossRef
Google scholar
|
[41] |
Hsu Y K, Fu S Y, Chen M H,
CrossRef
Google scholar
|
[42] |
Wei Y, Ke L, Kong J,
CrossRef
Pubmed
Google scholar
|
[43] |
Thomann I, Pinaud B A, Chen Z,
CrossRef
Pubmed
Google scholar
|
[44] |
Wang L, Zhou X, Nguyen N T,
CrossRef
Pubmed
Google scholar
|
[45] |
Zhang X, Liu Y, Kang Z. 3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for high-performance photoelectrochemical water splitting. ACS Applied Materials & Interfaces, 2014, 6(6): 4480–4489
CrossRef
Pubmed
Google scholar
|
[46] |
Su F, Wang T, Lv R,
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |