Plasmon-enhanced solar water splitting with metal oxide nanostructures: A brief overview of recent trends

Timur Sh. ATABAEV

PDF(258 KB)
PDF(258 KB)
Front. Mater. Sci. ›› 2018, Vol. 12 ›› Issue (3) : 207-213. DOI: 10.1007/s11706-018-0413-4
MINI-REVIEW
MINI-REVIEW

Plasmon-enhanced solar water splitting with metal oxide nanostructures: A brief overview of recent trends

Author information +
History +

Abstract

In the last decade, the surface plasmon resonance-enhanced solar water splitting (SWS) has been actively investigated for improved hydrogen production. In this mini-review, we briefly introduce the mechanisms for plasmon-enhanced SWS and then review some representative studies related to these mechanisms. In addition, we also briefly discuss how metal oxide geometry affects the SWS activity in combined metal--semiconductor nanostructures. Finally, we summarize the recent discoveries and proposed a future vision for plasmon-enhanced SWS with metal oxide nanostructures.

Keywords

surface plasmon resonance / solar water splitting / nanostructures / noble metals / metal oxides

Cite this article

Download citation ▾
Timur Sh. ATABAEV. Plasmon-enhanced solar water splitting with metal oxide nanostructures: A brief overview of recent trends. Front. Mater. Sci., 2018, 12(3): 207‒213 https://doi.org/10.1007/s11706-018-0413-4

References

[1]
Tachibana Y, Vayssieres L, Durrant J R. Artificial photosynthesis for solar water-splitting. Nature Photonics, 2012, 6(8): 511–518
CrossRef Google scholar
[2]
Atabaev T S, Ajmal M, Hong N H, . Ti-doped hematite thin films for efficient water splitting. Applied Physics A: Materials Science & Processing, 2015, 118(4): 1539–1542
CrossRef Google scholar
[3]
Ahmad H, Kamarudin S K, Minggu L J, . Hydrogen from photo-catalytic water splitting process: A review. Renewable & Sustainable Energy Reviews, 2015, 43: 599–610
CrossRef Google scholar
[4]
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38
CrossRef Pubmed Google scholar
[5]
Atabaev T S, Vu H H T, Ajmal M, . Dual-mode spectral convertors as a simple approach for the enhancement of hematite’s solar water splitting efficiency. Applied Physics A: Materials Science & Processing, 2015, 119(4): 1373–1377
CrossRef Google scholar
[6]
Walter M G, Warren E L, McKone J R, . Solar water splitting cells. Chemical Reviews, 2010, 110(11): 6446–6473
CrossRef Pubmed Google scholar
[7]
Tamirat A G, Rick J, Dubale A A, . Using hematite for photoelectrochemical water splitting: a review of current progress and challenges. Nanoscale Horizons, 2016, 1(4): 243–267
CrossRef Google scholar
[8]
Chen S, Thind S S, Chen A. Nanostructured materials for water splitting-state of the art and future needs: A mini-review. Electrochemistry Communications, 2016, 63: 10–17
CrossRef Google scholar
[9]
Wolcott A, Smith W A, Kuykendall T R, . Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays. Small, 2009, 5(1): 104–111
CrossRef Pubmed Google scholar
[10]
Wagner F T, Somorjai G A. Photocatalytic and photoelectrochemical hydrogen production on strontium titanate single crystals. Journal of the American Chemical Society, 1980, 102(17): 5494–5502
CrossRef Google scholar
[11]
Formal F L, Gratzel M, Sivula K. Controlling photoactivity in ultrathin hematite films for solar water-splitting. Advanced Functional Materials, 2010, 20(7): 1099–1107
CrossRef Google scholar
[12]
Thuy T N T, Atabaev T S, Vu H H T, . TiO2 thin films sensitized with upconversion phosphor for efficient solar water splitting. Journal of Nanoscience and Nanotechnology, 2017, 17(10): 7647–7650
CrossRef Google scholar
[13]
Wang J, Du C, Peng Q, . Enhanced photoelectrochemical water splitting performance of hematite nanorods by Co and Sn doping. International Journal of Hydrogen Energy, 2017, 42(49): 29140–29149
CrossRef Google scholar
[14]
Tsege E L, Atabaev T S, Hossain M A, . Cu-doped flower-like hematite nanostructures for efficient water splitting applications. Journal of Physics and Chemistry of Solids, 2016, 98: 283–289
CrossRef Google scholar
[15]
Atabaev T S, Lee D H, Hong N H. Fabrication of TiO2/CuO photoelectrode with enhanced solar water splitting activity. Functional Materials Letters, 2017, 10(06): 1750084
CrossRef Google scholar
[16]
Yu J, Hai Y, Cheng B. Enhanced photocatalytic H2-production activity of TiO2 by Ni(OH)2 cluster modification. The Journal of Physical Chemistry C, 2011, 115(11): 4953–4958
CrossRef Google scholar
[17]
Xu F, Mei J, Zheng M, . Au nanoparticles modified branched TiO2 nanorod array arranged with ultrathin nanorods for enhanced photoelectrochemical water splitting. Journal of Alloys and Compounds, 2017, 693: 1124–1132
CrossRef Google scholar
[18]
Atabaev T S, Atabaev S. Titania coated hematite nanostructures for solar water splitting applications. Nano Life, 2016, 6(2): 1650008
CrossRef Google scholar
[19]
Warren S C, Thimsen E. Plasmonic solar water splitting. Energy & Environmental Science, 2012, 5(1): 5133–5146
CrossRef Google scholar
[20]
Atabaev T S, Hossain M A, Lee D, . Pt-coated TiO2 nanorods for photoelectrochemical water splitting applications. Results in Physics, 2016, 6: 373–376
CrossRef Google scholar
[21]
Ye W, Long R, Huang H, . Plasmonic nanostructures in solar energy conversion. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2017, 5(5): 1008–1021
CrossRef Google scholar
[22]
Hartland G V. Optical studies of dynamics in noble metal nanostructures. Chemical Reviews, 2011, 111(6): 3858–3887
CrossRef Pubmed Google scholar
[23]
Atwater H A, Polman A. Plasmonics for improved photovoltaic devices. Nature Materials, 2010, 9(3): 205–213
CrossRef Pubmed Google scholar
[24]
Link S, El-Sayed M A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. The Journal of Physical Chemistry B, 1999, 103(21): 4212–4217
CrossRef Google scholar
[25]
Huang T, Xu X H N. Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using single-nanoparticle plasmonic microscopy and spectroscopy. Journal of Materials Chemistry, 2010, 20(44): 9867–9876
CrossRef Pubmed Google scholar
[26]
López-Lozano X, Barron H, Mottet C, . Aspect-ratio- and size-dependent emergence of the surface-plasmon resonance in gold nanorods — an ab initio TDDFT study. Physical Chemistry Chemical Physics, 2014, 16(5): 1820–1823
CrossRef Pubmed Google scholar
[27]
Zhang P, Wang T, Gong J. Mechanistic understanding of the plasmonic enhancement for solar water splitting. Advanced Materials, 2015, 27(36): 5328–5342
CrossRef Pubmed Google scholar
[28]
Ingram D B, Linic S. Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. Journal of the American Chemical Society, 2011, 133(14): 5202–5205
CrossRef Pubmed Google scholar
[29]
Zhang Q, Thrithamarassery Gangadharan D, Liu Y, . Recent advancements in plasmon-enhanced visible light-driven water splitting. Journal of Materiomics, 2017, 3(1): 33–50
CrossRef Google scholar
[30]
Cushing S K, Li J, Meng F, . Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. Journal of the American Chemical Society, 2012, 134(36): 15033–15041
CrossRef Pubmed Google scholar
[31]
Christopher P, Ingram D B, Linic S. Enhancing photochemical activity of semiconductor nanoparticles with optically active Ag nanostructures: Photochemistry mediated by Ag surface plasmons. The Journal of Physical Chemistry C, 2010, 114(19): 9173–9177
CrossRef Google scholar
[32]
Jain P K, Lee K S, El-Sayed I H, . Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. The Journal of Physical Chemistry B, 2006, 110(14): 7238–7248
CrossRef Pubmed Google scholar
[33]
Pala R A, White J, Barnard E, . Design of plasmonic thin-film solar cells with broadband absorption enhancements. Advanced Materials, 2009, 21(34): 3504–3509
CrossRef Google scholar
[34]
Govorov A O, Zhang H, Demir H V, . Photogeneration of hot plasmonic electrons with metal nanocrystals: Quantum description and potential applications. Nano Today, 2014, 9(1): 85–101
CrossRef Google scholar
[35]
Besteiro L V, Govorov A O. Amplified generation of hot electrons and quantum surface effects in nanoparticle dimers with plasmonic hot spots. The Journal of Physical Chemistry C, 2016, 120(34): 19329–19339
CrossRef Google scholar
[36]
Zhang H, Govorov A O. Optical generation of hot plasmonic carriers in metal nanocrystals: The effects of shape and field enhancement. The Journal of Physical Chemistry C, 2014, 118(14): 7606–7614
CrossRef Google scholar
[37]
Pu Y C, Wang G, Chang K D, . Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Letters, 2013, 13(8): 3817–3823
CrossRef Pubmed Google scholar
[38]
Chen K, Feng X, Hu R, . Effect of Ag nanoparticle size on the photoelectrochemical properties of Ag decorated TiO2 nanotube arrays. Journal of Alloys and Compounds, 2013, 554: 72–79
CrossRef Google scholar
[39]
Zhang Z, Zhang L, Hedhili M N, . Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Letters, 2013, 13(1): 14–20
CrossRef Pubmed Google scholar
[40]
Peng C, Wang W, Zhang W, . Surface plasmon-driven photoelectrochemical water splitting of TiO2 nanowires decorated with Ag nanoparticles under visible light illumination. Applied Surface Science, 2017, 420: 286–295
CrossRef Google scholar
[41]
Hsu Y K, Fu S Y, Chen M H, . Facile synthesis of Pt nanoparticles/ZnO nanorod arrays for photoelectrochemical water splitting. Electrochimica Acta, 2014, 120: 1–5
CrossRef Google scholar
[42]
Wei Y, Ke L, Kong J, . Enhanced photoelectrochemical water-splitting effect with a bent ZnO nanorod photo anode decorated with Ag nanoparticles. Nanotechnology, 2012, 23(23): 235401
CrossRef Pubmed Google scholar
[43]
Thomann I, Pinaud B A, Chen Z, . Plasmon enhanced solar-to-fuel energy conversion. Nano Letters, 2011, 11(8): 3440–3446
CrossRef Pubmed Google scholar
[44]
Wang L, Zhou X, Nguyen N T, . Plasmon-enhanced photoelectrochemical water splitting using au nanoparticles decorated on hematite nanoflake arrays. ChemSusChem, 2015, 8(4): 618–622
CrossRef Pubmed Google scholar
[45]
Zhang X, Liu Y, Kang Z. 3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for high-performance photoelectrochemical water splitting. ACS Applied Materials & Interfaces, 2014, 6(6): 4480–4489
CrossRef Pubmed Google scholar
[46]
Su F, Wang T, Lv R, . Dendritic Au/TiO2 nanorod arrays for visible-light driven photoelectrochemical water splitting. Nanoscale, 2013, 5(19): 9001–9009
CrossRef Pubmed Google scholar

Acknowledgement

This work was supported by the NU Social Policy grant.

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(258 KB)

Accesses

Citations

Detail

Sections
Recommended

/