A simple single-step approach towards synthesis of nanofluids containing cuboctahedral cuprous oxide particles using glucose reduction
U. Sandhya SHENOY , A. Nityananda SHETTY
Front. Mater. Sci. ›› 2018, Vol. 12 ›› Issue (1) : 74 -82.
A simple single-step approach towards synthesis of nanofluids containing cuboctahedral cuprous oxide particles using glucose reduction
Enhancement of thermal properties of conventional heat transfer fluids has become one of the important technical challenges. Since nanofluids offer a promising help in this regard, development of simpler and hassle free routes for their synthesis is of utmost importance. Synthesis of nanofluids using a hassle free route with greener chemicals has been reported. The single-step chemical approach reported here overcomes the drawbacks of the two-step procedures in the synthesis of nanofluids. The resulting Newtonian nanofluids prepared contained cuboctahedral particles of cuprous oxide and exhibited a thermal conductivity of 2.852 W·m−1·K−1. Polyvinylpyrrolidone (PVP) used during the synthesis acted as a stabilizing agent rendering the nanofluid a stability of 9 weeks.
cuprous oxide / nanofluids / thermal conductivity / viscosity
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
/
| 〈 |
|
〉 |