Graphene: from synthesis to engineering to biosensor applications
Jagpreet SINGH, Aditi RATHI, Mohit RAWAT, Manoj GUPTA
Graphene: from synthesis to engineering to biosensor applications
Graphene is a fascinating material of recent origin whose first isolation was being made possible through micromechanical cleavage of a graphite crystal. Owing to its fascinating properties, graphene has garnered significant attention in the research community for multiple applications. A number of methods have been employed for the synthesis of single-layer and multi-layer graphene. The extraordinary properties of graphene such as its Hall effect at room temperature, high surface area, tunable bandgap, high charge mobility and excellent electrical, conducting and thermal properties allow for the development of sensors of various types and also opened the doors for its use in nanoelectronics, supercapacitors and batteries. Biological aspects of graphene have also been investigated with particular emphasis on its toxicity and drug delivery. In this review, many of the salient aspects of graphene, such as from synthesis to its applications, primarily focusing on sensor applications which are of current interest, are covered.
graphene / nanoelectronics / Hall effect / tunable bandgap / supercapacitors / sensors / catalysis
[1] |
Novoselov K S, Geim A K, Morozov S V,
CrossRef
Pubmed
Google scholar
|
[2] |
Novoselov K S, Geim A K, Morozov S V,
CrossRef
Pubmed
Google scholar
|
[3] |
Rao C N R, Sood A K, Subrahmanyam K S,
CrossRef
Pubmed
Google scholar
|
[4] |
Chen J H, Jang C, Adam S,
CrossRef
Google scholar
|
[5] |
Han M Y, Ozyilmaz B, Zhang Y,
|
[6] |
Nair R R, Blake P, Grigorenko A N,
CrossRef
Pubmed
Google scholar
|
[7] |
Lee C, Wei X, Kysar J W,
CrossRef
Pubmed
Google scholar
|
[8] |
Wang Y, Huang Y, Song Y,
CrossRef
Pubmed
Google scholar
|
[9] |
Matte H S S R, Subrahmanyam K S, Rao C N R. Novel magnetic properties of graphene: Presence of both ferromagnetic and antiferromagnetic features and other aspects. The Journal of Physical Chemistry C, 2009, 113(23): 9982–9985
CrossRef
Google scholar
|
[10] |
Peigney A, Laurent C, Flahaut E,
CrossRef
Google scholar
|
[11] |
Rao C N R, Sood A K, Voggu R,
CrossRef
Google scholar
|
[12] |
Das B, Voggu R, Rout C S,
CrossRef
Pubmed
Google scholar
|
[13] |
Rao C N R, Voggu R. Charge-transfer with graphene and nanotubes. Materials Today, 2010, 13(9): 34–40
CrossRef
Google scholar
|
[14] |
Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6(3): 183–191
CrossRef
Pubmed
Google scholar
|
[15] |
Butler K T, Frost J M, Walsh A. Band alignment of the hybrid halide perovskites CH3NH3PbCl3, CH3NH3PbBr3 and CH3NH3PbI3. Materials Horizons, 2015, 2(2): 228–231
CrossRef
Google scholar
|
[16] |
Son D R, Raghu A V, Reddy K R,
CrossRef
Google scholar
|
[17] |
Hassan M, Reddy K R, Haque E,
CrossRef
Pubmed
Google scholar
|
[18] |
Reddy K R, Sin B C, Yoo C H,
CrossRef
Google scholar
|
[19] |
Cahill D G, Braun P V, Chen G,
CrossRef
Google scholar
|
[20] |
Stenzel M H, Barner-Kowollik C, Davis T P. Formation of honeycomb-structured, porous films via breath figures with different polymer architectures. Journal of Polymer Science Part A: Polymer Chemistry, 2006, 44(8): 2363–2375
CrossRef
Google scholar
|
[21] |
Choi S H, Kim D H, Raghu A V,
CrossRef
Google scholar
|
[22] |
Hassan M, Reddy K R, Haque E,
CrossRef
Google scholar
|
[23] |
Zhong Y J, Xie G Y, Sui G X,
CrossRef
Google scholar
|
[24] |
Reddy K R, Sin B C, Ryu K S,
CrossRef
Google scholar
|
[25] |
Reddy K R, Gomes V G, Hassan M. Carbon functionalized TiO2 nanofibers for high efficiency photocatalysis. Materials Research Express, 2014, 1(1): 015012
CrossRef
Google scholar
|
[26] |
Lee Y R, Kim S C, Lee H,
CrossRef
Google scholar
|
[27] |
Reddy K R, Hassan M, Gomes V G. Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis. Applied Catalysis A: General, 2015, 489: 1–16
CrossRef
Google scholar
|
[28] |
Khan M U, Reddy K R, Snguanwongchai T,
CrossRef
Google scholar
|
[29] |
Bolotin K I, Sikes K J, Jiang Z,
CrossRef
Google scholar
|
[30] |
Nair R R, Blake P, Grigorenko A N,
CrossRef
Pubmed
Google scholar
|
[31] |
Singh V, Joung D, Zhai L,
CrossRef
Google scholar
|
[32] |
Zhang Y, Tan Y W, Stormer H L,
CrossRef
Pubmed
Google scholar
|
[33] |
Novoselov K S, Jiang D, Schedin F,
CrossRef
Pubmed
Google scholar
|
[34] |
Novoselov K S, Jiang Z, Zhang Y,
CrossRef
Pubmed
Google scholar
|
[35] |
Novoselov K S, McCann E, Morozov S V,
CrossRef
Google scholar
|
[36] |
Oostinga J B, Heersche H B, Liu X,
CrossRef
Pubmed
Google scholar
|
[37] |
Becerril H A, Mao J, Liu Z,
CrossRef
Pubmed
Google scholar
|
[38] |
Di Bartolomeo A. Graphene Schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction. Physics Reports, 2016, 606: 1–58
CrossRef
Google scholar
|
[39] |
Bae S, Kim H, Lee Y,
CrossRef
Pubmed
Google scholar
|
[40] |
Tong J, Muthee M, Chen S Y,
CrossRef
Pubmed
Google scholar
|
[41] |
Sensale-Rodriguez B, Yan R, Kelly M M,
CrossRef
Pubmed
Google scholar
|
[42] |
Rothberg L J, Lovinger A J. Status of and prospects for organic electroluminescence. Journal of Materials Research, 1996, 11(12): 3174–3187
CrossRef
Google scholar
|
[43] |
Eda G, Lin Y Y, Mattevi C,
CrossRef
Pubmed
Google scholar
|
[44] |
Yu T, Ni Z, Du C,
CrossRef
Google scholar
|
[45] |
Ni Z H, Chen W, Fan X F,
CrossRef
Google scholar
|
[46] |
Ni Z H, Wang H M, Ma Y,
CrossRef
Pubmed
Google scholar
|
[47] |
Haldane F D M. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”. Physical Review Letters, 1988, 61(18): 2015–2018
CrossRef
Pubmed
Google scholar
|
[48] |
Klemens P G. Theory of thermal conduction in thin ceramic films. International Journal of Thermophysics, 2001, 22(1): 265–275
CrossRef
Google scholar
|
[49] |
Ghosh S, Calizo I, Teweldebrhan D,
CrossRef
Google scholar
|
[50] |
Novoselov K S, Castro Neto A H. Two-dimensional crystals-based heterostructures: materials with tailored properties. Physica Scripta, 2012, 146: 014006
CrossRef
Google scholar
|
[51] |
Hiura H, Ebbesen T W, Fujita J,
CrossRef
Google scholar
|
[52] |
Ebbesen T W, Hiura H. Graphene in 3-dimensions: Towards graphite origami. Advanced Materials, 1995, 7(6): 582–586
CrossRef
Google scholar
|
[53] |
Bernhardt T M, Kaiser B, Rademann K. Formation of superperiodic patterns on highly oriented pyrolytic graphite by manipulation of nanosized graphite sheets with the STM tip. Surface Science, 1998, 408(1–3): 86–94
CrossRef
Google scholar
|
[54] |
Atamny F, Spillecke O, Schlogl R. On the STM imaging contrast of graphite: towards a “true” atomic resolution. Physical Chemistry Chemical Physics, 1999, 1(17): 4113–4118
CrossRef
Google scholar
|
[55] |
Lu X, Yu M, Huang H,
CrossRef
Google scholar
|
[56] |
Roy H V, Kallinger C, Sattler K. Study of single and multiple foldings of graphitic sheets. Surface Science, 1998, 407(1–3): 1–6
CrossRef
Google scholar
|
[57] |
Dresselhaus M S, Dresselhaus G. Intercalation compounds of graphite. Advances in Physics, 1981, 30(2): 139–326
CrossRef
Google scholar
|
[58] |
Viculis L M, Mack J J, Mayer O M,
CrossRef
Google scholar
|
[59] |
Rao K S, Senthilnathan J, Liu Y F,
CrossRef
Pubmed
Google scholar
|
[60] |
Hibino H, Kageshima H, Nagase M. Graphene growth on silicon carbide. NTT Technical Review, 2009, 615–617: 199–202
|
[61] |
Ciszewski M, Mianowski A. Survey of graphite oxidation methods using oxidizing mixtures in inorganic acids. Chemik, 2013, 67: 267–274
|
[62] |
Hummers W S Jr, Offeman R E. Preparation of graphitic oxide. Journal of the American Chemical Society, 1958, 80(6): 1339
CrossRef
Google scholar
|
[63] |
Dreyer D R, Park S, Bielawski C W,
CrossRef
Pubmed
Google scholar
|
[64] |
Stankovich S, Dikin D A, Piner R D,
CrossRef
Google scholar
|
[65] |
Shin H J, Kim K K, Benayad A,
CrossRef
Google scholar
|
[66] |
Pham V H, Cuong T V, Nguyen-Phan T D,
CrossRef
Pubmed
Google scholar
|
[67] |
Zhou X, Zhang J, Wu H,
CrossRef
Google scholar
|
[68] |
Zhu C, Guo S, Fang Y,
CrossRef
Pubmed
Google scholar
|
[69] |
Zhang J, Yang H, Shen G,
CrossRef
Pubmed
Google scholar
|
[70] |
Wang X, Yang J, Park J,
CrossRef
Google scholar
|
[71] |
Fan X, Peng W, Li Y,
CrossRef
Google scholar
|
[72] |
Amarnath C A, Hong C E, Kim N H,
CrossRef
Google scholar
|
[73] |
Guo H L, Wang X F, Qian Q Y,
CrossRef
Pubmed
Google scholar
|
[74] |
Sundaram R S, Gómez-Navarro C, Balasubramanian K,
CrossRef
Google scholar
|
[75] |
Compton O C, Jain B, Dikin D A,
CrossRef
Pubmed
Google scholar
|
[76] |
Kim K S, Zhao Y, Jang H,
CrossRef
Pubmed
Google scholar
|
[77] |
Kwon S Y, Ciobanu C V, Petrova V,
CrossRef
Pubmed
Google scholar
|
[78] |
Sutter P W, Flege J I, Sutter E A. Epitaxial graphene on ruthenium. Nature Materials, 2008, 7(5): 406–411
CrossRef
Pubmed
Google scholar
|
[79] |
Coraux J, N’Diaye A T, Busse C,
CrossRef
Pubmed
Google scholar
|
[80] |
Li X, Cai W, An J,
CrossRef
Pubmed
Google scholar
|
[81] |
Reina A, Jia X, Ho J,
CrossRef
Pubmed
Google scholar
|
[82] |
Wang J J, Zhu M Y, Outlaw R A,
CrossRef
Google scholar
|
[83] |
Wang J, Zhu M, Outlaw R A,
CrossRef
Google scholar
|
[84] |
Zhu M, Wang J, Holloway B C,
CrossRef
Google scholar
|
[85] |
Cano-Márquez A G, Rodríguez-Macías F J, Campos-Delgado J,
CrossRef
Pubmed
Google scholar
|
[86] |
Jiao L, Zhang L, Wang X,
CrossRef
Pubmed
Google scholar
|
[87] |
Kosynkin D V, Higginbotham A L, Sinitskii A,
CrossRef
Pubmed
Google scholar
|
[88] |
Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene. Carbon, 2010, 48(8): 2127–2150
CrossRef
Google scholar
|
[89] |
Sahoo N G, Bao H, Pan Y,
CrossRef
Pubmed
Google scholar
|
[90] |
Pan Y, Bao H, Sahoo N G,
CrossRef
Google scholar
|
[91] |
Liu Z, Robinson J T, Sun X,
CrossRef
Pubmed
Google scholar
|
[92] |
Sun X, Liu Z, Welsher K,
CrossRef
Pubmed
Google scholar
|
[93] |
Feng L, Zhang S, Liu Z. Graphene based gene transfection. Nanoscale, 2011, 3(3): 1252–1257
CrossRef
Pubmed
Google scholar
|
[94] |
Chen B, Liu M, Zhang L,
CrossRef
Google scholar
|
[95] |
Bao H, Pan Y, Ping Y,
CrossRef
Pubmed
Google scholar
|
[96] |
Zhang L, Lu Z, Zhao Q,
CrossRef
Pubmed
Google scholar
|
[97] |
Yang K, Zhang S, Zhang G,
CrossRef
Pubmed
Google scholar
|
[98] |
Tian B, Wang C, Zhang S,
CrossRef
Pubmed
Google scholar
|
[99] |
Shen A, Li D, Cai X,
|
[100] |
Kim H, Namgung R, Singha K,
CrossRef
Pubmed
Google scholar
|
[101] |
Min K, Jung J Y, Han T H,
CrossRef
Google scholar
|
[102] |
Cao Y C, Wei W, Liu J,
CrossRef
Google scholar
|
[103] |
Zhao Y, Arowo M, Wu W,
CrossRef
Google scholar
|
[104] |
Lee T, Yun T, Park B,
CrossRef
Google scholar
|
[105] |
Lee J K, Song S, Kim B. Functionalized graphene sheets-epoxy based nanocomposite for cryotank composite application. Polymer Composites, 2012, 33(8): 1263–1273
CrossRef
Google scholar
|
[106] |
Chen L Y, Konishi H, Fehrenbacher A,
CrossRef
Google scholar
|
[107] |
Wang J, Li Z, Fan G,
CrossRef
Google scholar
|
[108] |
Zhou C, Szpunar J A, Cui X. Synthesis of Ni/graphene nanocomposite for hydrogen storage. ACS Applied Materials & Interfaces, 2016, 8(24): 15232–15241
CrossRef
Pubmed
Google scholar
|
[109] |
Gómez-Navarro C, Burghard M, Kern K. Elastic properties of chemically derived single graphene sheets. Nano Letters, 2008, 8(7): 2045–2049
CrossRef
Pubmed
Google scholar
|
[110] |
Koller A. Structure and Properties of Ceramics. Amsterdam: Elsevier Publishing Company, 1994
|
[111] |
Sternitzke M. Structural ceramic nanocomposites. Journal of the European Ceramic Society, 1997, 17(9): 1061–1082
CrossRef
Google scholar
|
[112] |
Choi S M, Awaji H. Nanocomposites — a new material design concept. Science and Technology of Advanced Materials, 2005, 6(1): 2–10
CrossRef
Google scholar
|
[113] |
Wu P, Lv H, Peng T,
CrossRef
Pubmed
Google scholar
|
[114] |
Eda G, Chhowalla M. Graphene-based composite thin films for electronics. Nano Letters, 2009, 9(2): 814–818
CrossRef
Pubmed
Google scholar
|
[115] |
Mohammad-Rezaei R, Razmi H, Jabbari M. Graphene ceramic composite as a new kind of surface-renewable electrode: application to the electroanalysis of ascorbic acid. Mikrochimica Acta, 2014, 181(15–16): 1879–1885
CrossRef
Google scholar
|
[116] |
Gutierrez-Gonzalez C F, Smirnov A, Centeno A,
CrossRef
Google scholar
|
[117] |
Zhou M, Lin T, Huang F,
CrossRef
Google scholar
|
[118] |
Zhang Y, Ali S F, Dervishi E,
CrossRef
Pubmed
Google scholar
|
[119] |
Fan H, Wang L, Zhao K,
CrossRef
Pubmed
Google scholar
|
[120] |
Xu S, Zhang Z, Chu M. Long-term toxicity of reduced graphene oxide nanosheets: Effects on female mouse reproductive ability and offspring development. Biomaterials, 2015, 54: 188–200
CrossRef
Pubmed
Google scholar
|
[121] |
Jennifer M, Maciej W. Nanoparticle technology as a double-edged sword: cytotoxic, genotoxic and epigenetic effects on living cells. Journal of Biomaterials and Nanobiotechnology, 2013, 4(01): 53–63
CrossRef
Google scholar
|
[122] |
Wu W, Yan L, Wu Q,
CrossRef
Pubmed
Google scholar
|
[123] |
Boruta R,Olejnik R, Slobodian P,
|
[124] |
Li J, Zhang Y, Yang T,
CrossRef
Google scholar
|
[125] |
Du J, Yue R, Yao Z,
CrossRef
Google scholar
|
[126] |
Sheng Z H, Zheng X Q, Xu J Y,
CrossRef
Pubmed
Google scholar
|
[127] |
Papa H, Gaillard M, Gonzalez L,
CrossRef
Pubmed
Google scholar
|
[128] |
Sun C L, Lee H H, Yang J M,
CrossRef
Pubmed
Google scholar
|
[129] |
Guo M, Chen J, Li J,
CrossRef
Google scholar
|
[130] |
Li L, Lu H, Deng L. A sensitive NADH and ethanol biosensor based on graphene–Au nanorods nanocomposites. Talanta, 2013, 113: 1–6
CrossRef
Pubmed
Google scholar
|
[131] |
Habibi B, Jahanbakhshi M, Pournaghi-Azar M H. Simultaneous determination of acetaminophen and dopamine using SWCNT modified carbon-ceramic electrode by differential pulse voltammetry. Electrochimica Acta, 2011, 56(7): 2888–2894
CrossRef
Google scholar
|
[132] |
Liu Y, Dong X, Chen P. Biological and chemical sensors based on graphene materials. Chemical Society Reviews, 2012, 41(6): 2283–2307
CrossRef
Pubmed
Google scholar
|
[133] |
Goenka S, Sant V, Sant S. Graphene-based nanomaterials for drug delivery and tissue engineering. Journal of Controlled Release, 2014, 173: 75–88
CrossRef
Pubmed
Google scholar
|
[134] |
Bo Z, Mao S, Han Z J,
CrossRef
Pubmed
Google scholar
|
[135] |
Lu G, Ocola L E, Chen J. Reduced graphene oxide for room-temperature gas sensors. Nanotechnology, 2009, 20(44): 445502
CrossRef
Pubmed
Google scholar
|
[136] |
Lu G, Huebner K L, Ocola L E,
CrossRef
Google scholar
|
[137] |
Lei N, Li P, Xue W,
CrossRef
Google scholar
|
[138] |
Bartolomeo A D, Luongo G, Giubileo F,
|
[139] |
Zhang W, Huang J K, Chen C H,
CrossRef
Pubmed
Google scholar
|
[140] |
Di Bartolomeo A, Genovese L, Foller T,
CrossRef
Pubmed
Google scholar
|
[141] |
Koppens F H L, Mueller T, Avouris P,
CrossRef
Pubmed
Google scholar
|
[142] |
Antony J, Grimme S. Structures and interaction energies of stacked graphene-nucleobase complexes. Physical Chemistry Chemical Physics, 2008, 10(19): 2722–2729
CrossRef
Pubmed
Google scholar
|
[143] |
Gowtham S,Scheicher R H, Ahuja R,
|
[144] |
Lin L, Liu Y, Tang L,
CrossRef
Pubmed
Google scholar
|
[145] |
Xu C, Xu B, Gu Y,
CrossRef
Google scholar
|
[146] |
Sun W, Hou F, Gong S,
CrossRef
Google scholar
|
[147] |
Shan C, Yang H, Song J,
CrossRef
Pubmed
Google scholar
|
[148] |
Zhou M, Zhai Y, Dong S. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Analytical Chemistry, 2009, 81(14): 5603–5613
CrossRef
Pubmed
Google scholar
|
[149] |
Dey R S, Raj C R. Redox-functionalized graphene oxide architecture for the development of amperometric biosensing platform. ACS Applied Materials & Interfaces, 2013, 5(11): 4791–4798
CrossRef
Pubmed
Google scholar
|
[150] |
Cao S, Zhang L, Chai Y,
CrossRef
Pubmed
Google scholar
|
[151] |
Li Z, Xie C, Wang J,
CrossRef
Google scholar
|
[152] |
Ahn J H, Choi S J, Han J W,
CrossRef
Pubmed
Google scholar
|
[153] |
Ohno Y, Maehashi K, Yamashiro Y,
CrossRef
Pubmed
Google scholar
|
[154] |
Mohanty N, Berry V. Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Letters, 2008, 8(12): 4469–4476
CrossRef
Pubmed
Google scholar
|
[155] |
Mao S, Yu K, Chang J,
CrossRef
Pubmed
Google scholar
|
[156] |
Stine R, Robinson J T, Sheehan P E,
CrossRef
Pubmed
Google scholar
|
[157] |
Bonanni A, Loo A H, Pumera M. Graphene for impedimetric biosensing. Trends in Analytical Chemistry, 2012, 37: 12–21
CrossRef
Google scholar
|
[158] |
Bonanni A, Pumera M. Graphene platform for hairpin-DNA-based impedimetric genosensing. ACS Nano, 2011, 5(3): 2356–2361
CrossRef
Pubmed
Google scholar
|
[159] |
Wang J, Kwak Y, Lee I Y,
CrossRef
Google scholar
|
[160] |
Mao S, Cui S, Lu G,
CrossRef
Google scholar
|
[161] |
Sudibya H G, He Q, Zhang H,
Pubmed
|
[162] |
Zhou H, Wang X, Yu P,
CrossRef
Pubmed
Google scholar
|
[163] |
Li S J, Qian C, Wang K,
CrossRef
Google scholar
|
[164] |
Wang Y, Zhang S, Du D,
CrossRef
Google scholar
|
[165] |
Zhang L, Zhang A, Du D,
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |