Improved photocatalytic degradation of organic dye using Ag3PO4/MoS2 nanocomposite

Madhulika SHARMA , Pranab Kishore MOHAPATRA , Dhirendra BAHADUR

Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (4) : 366 -374.

PDF (450KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (4) : 366 -374. DOI: 10.1007/s11706-017-0404-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Improved photocatalytic degradation of organic dye using Ag3PO4/MoS2 nanocomposite

Author information +
History +
PDF (450KB)

Abstract

Highly efficient Ag3PO4/MoS2 nanocomposite photocatalyst was synthesized using a wet chemical route with a low weight percentage of highly exfoliated MoS2 (0.1 wt.%) and monodispersed Ag3PO4 nanoparticles (~5.4 nm). The structural and optical properties of the nanocomposite were studied using various characterization techniques, such as XRD, TEM, Raman and absorption spectroscopy. The composite exhibits markedly enhanced photocatalytic activity with a low lamp power (60 W). Using this composite, a high kinetic rate constant (k) value of 0.244 min−1 was found. It was observed that ~97.6% of dye degrade over the surface of nanocomposite catalyst within 15 min of illumination. The improved photocatalytic activity of Ag3PO4/MoS2 nanocomposite is attributed to the efficient interfacial charge separation, which was supported by the PL results. Large surface area of MoS2 nanosheets incorporated with well dispersed Ag3PO4 nanoparticles further increases charge separation, contributing to enhanced degradation efficiency. A possible mechanism for charge separation is also discussed.

Keywords

Ag 3PO 4/MoS 2 nanocomposite / methylene blue / degradation efficiency / photocatalysis

Cite this article

Download citation ▾
Madhulika SHARMA, Pranab Kishore MOHAPATRA, Dhirendra BAHADUR. Improved photocatalytic degradation of organic dye using Ag3PO4/MoS2 nanocomposite. Front. Mater. Sci., 2017, 11(4): 366-374 DOI:10.1007/s11706-017-0404-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fujishima AHonda  K. Electrochemical photolysis of water at a semiconductor electrode. Nature1972238(5358): 37–38

[2]

Ming HMa  ZHuang H . Nanoporous TiO2 spheres with narrow pore size distribution and improved visible light photocatalytic abilities. Chemical Communications201147(28): 8025–8027

[3]

Singh SBarick  K CBahadur  D. Fe3O4 embedded ZnO nanocomposites for the removal of toxic metal ions, organic dyes and bacterial pathogens. Journal of Materials Chemistry A: Materials for Energy and Sustainability20131(10): 3325–3333

[4]

Sutanto HWibowo  SNurhasanah I . Ag doped ZnO thin films synthesized by spray coating technique for methylene blue photodegradation under UV irradiation. International Journal of Chemical Engineering2016: 6195326 (6 pages) doi: 10.1155/2016/6195326

[5]

Bajaj RSharma  MBahadur D . Visible light-driven novel nanocomposite (BiVO4/CuCr2O4) for efficient degradation of organic dye. Dalton Transactions201342(19): 6736–6744

[6]

Yi ZYe  JKikugawa N . An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nature Materials20109(7): 559–564

[7]

Bi YOuyang  SUmezawa N . Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties. Journal of the American Chemical Society2011133(17): 6490–6492

[8]

Dinh C TNguyen  T DKleitz  F. Large-scale synthesis of uniform silver orthophosphate colloidal nanocrystals exhibiting high visible light photocatalytic activity. Chemical Communications201147(27): 7797–7799

[9]

Thiyagarajan SSingh  SBahadur D . Reusable sunlight activated photocatalyst Ag3PO4 and its significant antibacterial activity. Materials Chemistry and Physics2016173: 385–394

[10]

Yang X FCui  H YLi  Y. Fabrication of Ag3PO4‒graphene composites with highly efficient and stable visible light photocatalytic performance. ACS Catalysis20133(3): 363–369

[11]

Yang Z MHuang  G FHuang  W Q. Novel Ag3PO4/CeO2 composite with high efficiency and stability for photocatalytic applications. Journal of Materials Chemistry A: Materials for Energy and Sustainability20142(6): 1750–1756

[12]

Li CZhang  PLv R . Selective deposition of Ag3PO4 on monoclinic BiVO4(040) for highly efficient photocatalysis. Small20139(23): 3951–3956, 3950

[13]

Wang PHuang  BDai Y . Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Physical Chemistry Chemical Physics201214(28): 9813–9825

[14]

Zhu T THuang  L YSong  Y H. Modification of Ag3VO4 with graphene-like MoS2 for enhanced visible-light photocatalytic property and stability. New Journal of Chemistry201640(3): 2168–2177

[15]

Hongjian YYong  YJianghao L . Space-confined growth of Ag3PO4 nanoparticles within WS2 sheets: Ag3PO4/WS2 composites as visible-light-driven photocatalysts for decomposing dyes. Journal of Materials Chemistry A: Materials for Energy and Sustainability20153(38): 19439–19444

[16]

Zheng XXu  JYan K . Space-confined growth of MoS2 nanosheets within graphite: the layered hybrid of MoS2 and graphene as an active catalyst for hydrogen evolution reaction. Chemistry of Materials201426(7): 2344–2353

[17]

Ge LHan  C CXiao  X L. Synthesis and characterization of composite visible light active photocatalysts MoS2‒g-C3N4 with enhanced hydrogen evolution activity. International Journal of Hydrogen Energy201338(17): 6960–6969

[18]

Zong XYan  HWu G . Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. Journal of the American Chemical Society2008130(23): 7176–7177

[19]

Gao QGiordano  CAntonietti M . Biomimetic oxygen activation by MoS2/Ta3N5 nanocomposites for selective aerobic oxidation. Angewandte Chemie201251(47): 11740–11744

[20]

Wang LChai  YRen J . Ag3PO4 nanoparticles loaded on 3D flower-like spherical MoS2: a highly efficient hierarchical heterojunction photocatalyst. Dalton Transactions201544(33): 14625–14634

[21]

Shao NWang  JWang D . Preparation of three-dimensional Ag3PO4/TiO2@MoS2 for enhanced visible-light photocatalytic activity and anti-photocorrosion. Applied Catalysis B: Environmental2017203: 964–978

[22]

Gyawali GLee  S W. Microwave hydrothermal synthesis and characterization of Ag3PO4/MoS2 composite photocatalyst. Journal of Nanoscience and Nanotechnology201616(11): 11158–11163

[23]

Zhu CZhang  LJiang B . Fabrication of Z-scheme Ag3PO4/MoS2 composites with enhanced photocatalytic activity and stability for organic pollutant degradation. Applied Surface Science2016377: 99–108

[24]

Wang PShi  PHong Y . Facile deposition of Ag3PO4 on graphene-like MoS2 nanosheets for highly efficient photocatalysis. Materials Research Bulletin201562: 24–29

[25]

Song YLei  YXu H . Synthesis of few-layer MoS2 nanosheet-loaded Ag3PO4 for enhanced photocatalytic activity. Dalton Transactions201544(7): 3057–3066

[26]

Wan JDu  XLiu E . Z-scheme visible-light-driven Ag3PO4 nanoparticle@MoS2 quantum dot/few-layered MoS2 nanosheet heterostructures with high efficiency and stability for photocatalytic selective oxidation. Journal of Catalysis2017345: 281–294

[27]

Guo NLi  HXu X . Hierarchical Fe3O4@MoS2/Ag3PO4 magnetic nanocomposites: Enhanced and stable photocatalytic performance for water purification under visible light irradiation. Applied Surface Science2016389: 227–239

[28]

Peng W CWang  XLi X Y . The synergetic effect of MoS2 and graphene on Ag3PO4 for its ultra-enhanced photocatalytic activity in phenol degradation under visible light. Nanoscale20146(14): 8311–8317

[29]

Li SGu  XZhao Y . Enhanced visible-light photocatalytic activity and stability by incorporating a small amount of MoS2 into Ag3PO4 microcrystals. Journal of Materials Science: Materials in Electronics201627(1): 386–392

[30]

Zheng JZhang  HDong S . High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nature Communications20145: 2995

[31]

Eda GYamaguchi  HVoiry D . Photoluminescence from chemically exfoliated MoS2. Nano Letters201111(12): 5111–5116

[32]

Cheng PSun  KHu Y H . Mechanically-induced reverse phase transformation of MoS2 from stable 2H to metastable 1T and its memristive behavior. RSC Advances20166(70): 65691–65697

[33]

Zhang H CHuang  HMing H . Carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced photocatalytic activity and stability under visible light. Journal of Materials Chemistry201222(21): 10501–10506

[34]

Li XLi  J HWang  K. Pressure and temperature-dependent Raman spectra of MoS2 film. Applied Physics Letters2016109(24): 242101

[35]

Frost R LMusumeci  A WKloprogge  J T. Raman spectroscopy of hydrotalcites with phosphate in the interlayer: implications for the removal of phosphate from water. Journal of Raman Spectroscopy200637(7): 733–741

[36]

Lopez-Bote M A Montero S . Raman intensities, vibrational eigenvectors, electro-optical parameters and force constants of SO42−, ClO4, PO43−, CO32− and NO3 anions in polycrystalline samples. Journal of Raman Spectroscopy19809(6): 386–392

[37]

Lee CYan  HBrus L E . Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano20104(5): 2695–2700

[38]

Pagona GBittencourt  CArenal R . Exfoliated semiconducting pure 2H-MoS2 and 2H-WS2 assisted by chlorosulfonic acid. Chemical Communications201551(65): 12950–12953 doi:10.1039/C5CC04689K

[39]

Jiang BWang  YWang J Q In situ fabrication of Ag/Ag3PO4/graphene triple heterostructure visible-light photocatalyst through graphene-assisted reduction strategy. ChemCatChem20135(6): 1359–1367

[40]

Xiang QYu  JJaroniec M . Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets. Nanoscale20113(9): 3670–3678

[41]

Yan Y HGuan  H YLiu  S. Ag3PO4/Fe2O3 composite photocatalysts with an n-n heterojunction semiconductor structure under visible-light irradiation. Ceramics International201440(7): 9095–9100

[42]

Liu J JFu  X LChen  S F. Electronic structure and optical properties of Ag3PO4 photocatalyst calculated by hybrid density functional method. Applied Physics Letters201199(19): 191903 (3 pages) 

[43]

Liang QShi  YMa W . Enhanced photocatalytic activity and structural stability by hybridizing Ag3PO4 nanospheres with graphene oxide sheets. Physical Chemistry Chemical Physics201214(45): 15657–15665

[44]

Zhai H SYan  T JWang  P. Effect of chemical etching by ammonia solution on the microstructure and photocatalytic activity of Ag3PO4 photocatalyst. Applied Catalysis A: General2016528: 104–112

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (450KB)

1165

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/