Improved photocatalytic degradation of organic dye using Ag3PO4/MoS2 nanocomposite

Madhulika SHARMA, Pranab Kishore MOHAPATRA, Dhirendra BAHADUR

PDF(450 KB)
PDF(450 KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (4) : 366-374. DOI: 10.1007/s11706-017-0404-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Improved photocatalytic degradation of organic dye using Ag3PO4/MoS2 nanocomposite

Author information +
History +

Abstract

Highly efficient Ag3PO4/MoS2 nanocomposite photocatalyst was synthesized using a wet chemical route with a low weight percentage of highly exfoliated MoS2 (0.1 wt.%) and monodispersed Ag3PO4 nanoparticles (~5.4 nm). The structural and optical properties of the nanocomposite were studied using various characterization techniques, such as XRD, TEM, Raman and absorption spectroscopy. The composite exhibits markedly enhanced photocatalytic activity with a low lamp power (60 W). Using this composite, a high kinetic rate constant (k) value of 0.244 min−1 was found. It was observed that ~97.6% of dye degrade over the surface of nanocomposite catalyst within 15 min of illumination. The improved photocatalytic activity of Ag3PO4/MoS2 nanocomposite is attributed to the efficient interfacial charge separation, which was supported by the PL results. Large surface area of MoS2 nanosheets incorporated with well dispersed Ag3PO4 nanoparticles further increases charge separation, contributing to enhanced degradation efficiency. A possible mechanism for charge separation is also discussed.

Keywords

Ag3PO4/MoS2 nanocomposite / methylene blue / degradation efficiency / photocatalysis

Cite this article

Download citation ▾
Madhulika SHARMA, Pranab Kishore MOHAPATRA, Dhirendra BAHADUR. Improved photocatalytic degradation of organic dye using Ag3PO4/MoS2 nanocomposite. Front. Mater. Sci., 2017, 11(4): 366‒374 https://doi.org/10.1007/s11706-017-0404-x

References

[1]
Fujishima A, Honda  K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38
CrossRef Pubmed Google scholar
[2]
Ming H, Ma  Z, Huang H , . Nanoporous TiO2 spheres with narrow pore size distribution and improved visible light photocatalytic abilities. Chemical Communications, 2011, 47(28): 8025–8027
CrossRef Pubmed Google scholar
[3]
Singh S, Barick  K C, Bahadur  D. Fe3O4 embedded ZnO nanocomposites for the removal of toxic metal ions, organic dyes and bacterial pathogens. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(10): 3325–3333
CrossRef Google scholar
[4]
Sutanto H, Wibowo  S, Nurhasanah I , . Ag doped ZnO thin films synthesized by spray coating technique for methylene blue photodegradation under UV irradiation. International Journal of Chemical Engineering, 2016: 6195326 (6 pages) doi: 10.1155/2016/6195326
[5]
Bajaj R, Sharma  M, Bahadur D . Visible light-driven novel nanocomposite (BiVO4/CuCr2O4) for efficient degradation of organic dye. Dalton Transactions, 2013, 42(19): 6736–6744
CrossRef Pubmed Google scholar
[6]
Yi Z, Ye  J, Kikugawa N , . An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nature Materials, 2010, 9(7): 559–564
CrossRef Pubmed Google scholar
[7]
Bi Y, Ouyang  S, Umezawa N , . Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties. Journal of the American Chemical Society, 2011, 133(17): 6490–6492
CrossRef Pubmed Google scholar
[8]
Dinh C T, Nguyen  T D, Kleitz  F, . Large-scale synthesis of uniform silver orthophosphate colloidal nanocrystals exhibiting high visible light photocatalytic activity. Chemical Communications, 2011, 47(27): 7797–7799
CrossRef Pubmed Google scholar
[9]
Thiyagarajan S, Singh  S, Bahadur D . Reusable sunlight activated photocatalyst Ag3PO4 and its significant antibacterial activity. Materials Chemistry and Physics, 2016, 173: 385–394
CrossRef Google scholar
[10]
Yang X F, Cui  H Y, Li  Y, . Fabrication of Ag3PO4‒graphene composites with highly efficient and stable visible light photocatalytic performance. ACS Catalysis, 2013, 3(3): 363–369
CrossRef Google scholar
[11]
Yang Z M, Huang  G F, Huang  W Q, . Novel Ag3PO4/CeO2 composite with high efficiency and stability for photocatalytic applications. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(6): 1750–1756
CrossRef Google scholar
[12]
Li C, Zhang  P, Lv R , . Selective deposition of Ag3PO4 on monoclinic BiVO4(040) for highly efficient photocatalysis. Small, 2013, 9(23): 3951–3956, 3950
CrossRef Pubmed Google scholar
[13]
Wang P, Huang  B, Dai Y , . Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Physical Chemistry Chemical Physics, 2012, 14(28): 9813–9825
CrossRef Pubmed Google scholar
[14]
Zhu T T, Huang  L Y, Song  Y H, . Modification of Ag3VO4 with graphene-like MoS2 for enhanced visible-light photocatalytic property and stability. New Journal of Chemistry, 2016, 40(3): 2168–2177
CrossRef Google scholar
[15]
Hongjian Y, Yong  Y, Jianghao L , . Space-confined growth of Ag3PO4 nanoparticles within WS2 sheets: Ag3PO4/WS2 composites as visible-light-driven photocatalysts for decomposing dyes. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(38): 19439–19444
CrossRef Google scholar
[16]
Zheng X, Xu  J, Yan K , . Space-confined growth of MoS2 nanosheets within graphite: the layered hybrid of MoS2 and graphene as an active catalyst for hydrogen evolution reaction. Chemistry of Materials, 2014, 26(7): 2344–2353
CrossRef Google scholar
[17]
Ge L, Han  C C, Xiao  X L, . Synthesis and characterization of composite visible light active photocatalysts MoS2‒g-C3N4 with enhanced hydrogen evolution activity. International Journal of Hydrogen Energy, 2013, 38(17): 6960–6969
CrossRef Google scholar
[18]
Zong X, Yan  H, Wu G , . Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. Journal of the American Chemical Society, 2008, 130(23): 7176–7177
CrossRef Pubmed Google scholar
[19]
Gao Q, Giordano  C, Antonietti M . Biomimetic oxygen activation by MoS2/Ta3N5 nanocomposites for selective aerobic oxidation. Angewandte Chemie, 2012, 51(47): 11740–11744
CrossRef Pubmed Google scholar
[20]
Wang L, Chai  Y, Ren J , . Ag3PO4 nanoparticles loaded on 3D flower-like spherical MoS2: a highly efficient hierarchical heterojunction photocatalyst. Dalton Transactions, 2015, 44(33): 14625–14634
CrossRef Pubmed Google scholar
[21]
Shao N, Wang  J, Wang D , . Preparation of three-dimensional Ag3PO4/TiO2@MoS2 for enhanced visible-light photocatalytic activity and anti-photocorrosion. Applied Catalysis B: Environmental, 2017, 203: 964–978
CrossRef Google scholar
[22]
Gyawali G, Lee  S W. Microwave hydrothermal synthesis and characterization of Ag3PO4/MoS2 composite photocatalyst. Journal of Nanoscience and Nanotechnology, 2016, 16(11): 11158–11163
CrossRef Google scholar
[23]
Zhu C, Zhang  L, Jiang B , . Fabrication of Z-scheme Ag3PO4/MoS2 composites with enhanced photocatalytic activity and stability for organic pollutant degradation. Applied Surface Science, 2016, 377: 99–108
CrossRef Google scholar
[24]
Wang P, Shi  P, Hong Y , . Facile deposition of Ag3PO4 on graphene-like MoS2 nanosheets for highly efficient photocatalysis. Materials Research Bulletin, 2015, 62: 24–29
CrossRef Google scholar
[25]
Song Y, Lei  Y, Xu H , . Synthesis of few-layer MoS2 nanosheet-loaded Ag3PO4 for enhanced photocatalytic activity. Dalton Transactions, 2015, 44(7): 3057–3066
CrossRef Pubmed Google scholar
[26]
Wan J, Du  X, Liu E , . Z-scheme visible-light-driven Ag3PO4 nanoparticle@MoS2 quantum dot/few-layered MoS2 nanosheet heterostructures with high efficiency and stability for photocatalytic selective oxidation. Journal of Catalysis, 2017, 345: 281–294
CrossRef Google scholar
[27]
Guo N, Li  H, Xu X , . Hierarchical Fe3O4@MoS2/Ag3PO4 magnetic nanocomposites: Enhanced and stable photocatalytic performance for water purification under visible light irradiation. Applied Surface Science, 2016, 389: 227–239
CrossRef Google scholar
[28]
Peng W C, Wang  X, Li X Y . The synergetic effect of MoS2 and graphene on Ag3PO4 for its ultra-enhanced photocatalytic activity in phenol degradation under visible light. Nanoscale, 2014, 6(14): 8311–8317
CrossRef Pubmed Google scholar
[29]
Li S, Gu  X, Zhao Y , . Enhanced visible-light photocatalytic activity and stability by incorporating a small amount of MoS2 into Ag3PO4 microcrystals. Journal of Materials Science: Materials in Electronics, 2016, 27(1): 386–392
CrossRef Google scholar
[30]
Zheng J, Zhang  H, Dong S , . High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nature Communications, 2014, 5: 2995
CrossRef Pubmed Google scholar
[31]
Eda G, Yamaguchi  H, Voiry D , . Photoluminescence from chemically exfoliated MoS2. Nano Letters, 2011, 11(12): 5111–5116
CrossRef Pubmed Google scholar
[32]
Cheng P, Sun  K, Hu Y H . Mechanically-induced reverse phase transformation of MoS2 from stable 2H to metastable 1T and its memristive behavior. RSC Advances, 2016, 6(70): 65691–65697
CrossRef Google scholar
[33]
Zhang H C, Huang  H, Ming H , . Carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced photocatalytic activity and stability under visible light. Journal of Materials Chemistry, 2012, 22(21): 10501–10506
CrossRef Google scholar
[34]
Li X, Li  J H, Wang  K, . Pressure and temperature-dependent Raman spectra of MoS2 film. Applied Physics Letters, 2016, 109(24): 242101
CrossRef Google scholar
[35]
Frost R L, Musumeci  A W, Kloprogge  J T, . Raman spectroscopy of hydrotalcites with phosphate in the interlayer: implications for the removal of phosphate from water. Journal of Raman Spectroscopy, 2006, 37(7): 733–741
CrossRef Google scholar
[36]
Lopez-Bote M A ,  Montero S . Raman intensities, vibrational eigenvectors, electro-optical parameters and force constants of SO42−, ClO4, PO43−, CO32− and NO3 anions in polycrystalline samples. Journal of Raman Spectroscopy, 1980, 9(6): 386–392
CrossRef Google scholar
[37]
Lee C, Yan  H, Brus L E , . Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano, 2010, 4(5): 2695–2700
CrossRef Pubmed Google scholar
[38]
Pagona G, Bittencourt  C, Arenal R , . Exfoliated semiconducting pure 2H-MoS2 and 2H-WS2 assisted by chlorosulfonic acid. Chemical Communications, 2015, 51(65): 12950–12953 doi:10.1039/C5CC04689K
Pubmed
[39]
Jiang B, Wang  Y, Wang J Q , . In situ fabrication of Ag/Ag3PO4/graphene triple heterostructure visible-light photocatalyst through graphene-assisted reduction strategy. ChemCatChem, 2013, 5(6): 1359–1367
CrossRef Google scholar
[40]
Xiang Q, Yu  J, Jaroniec M . Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets. Nanoscale, 2011, 3(9): 3670–3678
CrossRef Pubmed Google scholar
[41]
Yan Y H, Guan  H Y, Liu  S, . Ag3PO4/Fe2O3 composite photocatalysts with an n-n heterojunction semiconductor structure under visible-light irradiation. Ceramics International, 2014, 40(7): 9095–9100
CrossRef Google scholar
[42]
Liu J J, Fu  X L, Chen  S F, . Electronic structure and optical properties of Ag3PO4 photocatalyst calculated by hybrid density functional method. Applied Physics Letters, 2011, 99(19): 191903 (3 pages) 
CrossRef Google scholar
[43]
Liang Q, Shi  Y, Ma W , . Enhanced photocatalytic activity and structural stability by hybridizing Ag3PO4 nanospheres with graphene oxide sheets. Physical Chemistry Chemical Physics, 2012, 14(45): 15657–15665
CrossRef Pubmed Google scholar
[44]
Zhai H S, Yan  T J, Wang  P, . Effect of chemical etching by ammonia solution on the microstructure and photocatalytic activity of Ag3PO4 photocatalyst. Applied Catalysis A: General, 2016, 528: 104–112
CrossRef Google scholar

Acknowledgements

The authors gratefully acknowledge nanomission DST, WOS-A DST, Government of India for financial support and CRNTS, IIT Bombay for providing us HRTEM, HRSEM and Raman facilities.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(450 KB)

Accesses

Citations

Detail

Sections
Recommended

/