Ga2O3 doping and vacancy effect in KNN--LT lead-free piezoceramics

Zhi TAN, Jie XING, Laiming JIANG, Jianguo ZHU, Bo WU

PDF(575 KB)
PDF(575 KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (4) : 344-352. DOI: 10.1007/s11706-017-0403-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Ga2O3 doping and vacancy effect in KNN--LT lead-free piezoceramics

Author information +
History +

Abstract

Ga2O3 was doped into 0.95(K0.48Na0.52)NbO3–0.05LiTaO3 (KNN–LT) ceramics and its influences on the sintering behavior, phase structure and electrical properties of ceramics were studied. Firstly, SEM observation exhibits that more and more glass phase appears in ceramics with the gradual addition of Ga2O3, which determines the continuous decrease in sintering temperatures. And the addition of Ga2O3 is also found to increase the orthorhombic–tetragonal transition temperature (TOT) of system to a higher level. Secondly, both the density and the coercive field (EC) of ceramics increase firstly and then decrease with increasing the Ga2O3 content, and the KNN–LT–xGa sample at x = 0.004 shows a pinched PE hysteresis loop. Finally, the impedance characteristics of KNN–LT–xGa ceramics were investigated at different temperatures, revealing a typical vacancy related conduction mechanism. This work demonstrates that Ga2O3 is a good sintering aid for KNN-based ceramics, and the vacancy plays an important role in the sintering and electrical behaviors of ceramics.

Keywords

lead-free piezoceramics / Ga2O3 / phase structure / piezoelectric properties / sintering behavior

Cite this article

Download citation ▾
Zhi TAN, Jie XING, Laiming JIANG, Jianguo ZHU, Bo WU. Ga2O3 doping and vacancy effect in KNN--LT lead-free piezoceramics. Front. Mater. Sci., 2017, 11(4): 344‒352 https://doi.org/10.1007/s11706-017-0403-y

References

[1]
Jaffe B, Roth  R S, Marzullo  S. Properties of piezoelectric ceramics in the solid-solution series lead titanate–lead zirconate–lead oxide: tin oxide and lead titanate–lead hafnate. Journal of Research of the National Bureau of Standards, 1955, 55(5): 239–254
CrossRef Google scholar
[2]
Jaffe B. Piezoelectric Ceramics. India: Academic Press, 1971, Chapter 7
[3]
Shrout T R, Zhang  S J. Lead-free piezoelectric ceramics: Alternatives for PZT? Journal of Electroceramics, 2007, 19(1): 113–126
CrossRef Google scholar
[4]
Rödel J, Jo  W, Seifert K T P , . Perspective on the development of lead-free piezoceramics. Journal of the American Ceramic Society, 2009, 92(6): 1153–1177
CrossRef Google scholar
[5]
Saito Y, Takao  H, Tani T , . Lead-free piezoceramics. Nature, 2004, 432(7013): 84–87
CrossRef Pubmed Google scholar
[6]
Wu J, Xiao  D, Zhu J . Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chemical Reviews, 2015, 115(7): 2559–2595
CrossRef Pubmed Google scholar
[7]
Li J F, Wang  K, Zhu F Y , . (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects. Processing technologies, and remaining challenges. Journal of the American Ceramic Society, 2013, 96(12): 3677–3696
CrossRef Google scholar
[8]
Matsubara M, Yamaguchi  T, Kikuta K , . Sintering and piezoelectric properties of potassium sodium niobate ceramics with newly developed sintering aid. Japanese Journal of Applied Physics, 2005, 44(1A): 258–263
CrossRef Google scholar
[9]
Rubio-Marcos F, Romero  J J, Navarro-Rojero  M G, . Effect of ZnO on the structure, microstructure and electrical properties of KNN-modified piezoceramics. Journal of the European Ceramic Society, 2009, 29(14): 3045–3052
CrossRef Google scholar
[10]
Matsubara M, Yamaguchi  T, Sakamoto W , . Processing and piezoelectric properties of lead-free (K, Na)(Nb, Ta)O3 ceramics. Journal of the American Ceramic Society, 2005, 88(5): 1190–1196
CrossRef Google scholar
[11]
Mgbemere H E, Herber  R P, Schneider  G A. Effect of MnO2 on the dielectric and piezoelectric properties of alkaline niobate based lead free piezoelectric ceramics. Journal of the European Ceramic Society, 2009, 29(9): 1729–1733
CrossRef Google scholar
[12]
Bernard J, Benčan  A, Rojac T , . Low-temperature sintering of K0.5Na0.5NbO3 ceramics. Journal of the American Ceramic Society, 2008, 91(7): 2409–2411
CrossRef Google scholar
[13]
Zuo R, Rödel  J, Chen R , . Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics. Journal of the American Ceramic Society, 2006, 89(6): 2010–2015
CrossRef Google scholar
[14]
Chen K, Zhou  J, Zhang F , . Screening sintering aids for (K0.5Na0.5)NbO3 ceramics. Journal of the American Ceramic Society, 2015, 98(6): 1698–1701
CrossRef Google scholar
[15]
Rao M V M ,  Kao C F . (Bi0.5Na0.5)0.93Ba0.07TiO3 lead-free ceramics with addition of Ga2O3. Physica B: Condensed Matter, 2008, 403(19–20): 3596–3598
CrossRef Google scholar
[16]
Jiang Y, Qin  B, Zhao Y , . Microstructure, dielectric, and piezoelectric properties of 0.38Bi(GaxSc1−x)O3–0.62PbTiO3 high temperature piezoelectric ceramics. physica status solidi (RRL) - Rapid Research Letters, 2008, 2(1): 28–30
[17]
Ma J, Liu  X, Li W . High piezoelectric coefficient and temperature stability of Ga2O3-doped (Ba0.99Ca0.01)(Zr0.02Ti0.98)O3 lead-free ceramics by low-temperature sintering. Journal of Alloys and Compounds, 2013, 581: 642–645
CrossRef Google scholar
[18]
Hayati R, Barzegar  A. Microstructure and electrical properties of lead free potassium sodium niobate piezoceramics with nano ZnO additive. Materials Science and Engineering B, 2010, 172(2): 121–126
CrossRef Google scholar
[19]
Wu J. High piezoelectricity in low-temperature sintering potassium–sodium niobate-based lead-free ceramics. RSC Advances, 2014, 4(96): 53490–53497
CrossRef Google scholar
[20]
Du H, Liu  D, Tang F , . Microstructure, piezoelectric, and ferroelectric properties of Bi2O3-added (K0.5Na0.5)NbO3 lead-free ceramics. Journal of the American Ceramic Society, 2007, 90(9): 2824–2829
CrossRef Google scholar
[21]
Gao D, Kwok  K W, Lin  D, . Microstructure, electrical properties of CeO2-doped (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics. Journal of Materials Science, 2009, 44(10): 2466–2470
CrossRef Google scholar
[22]
Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 1976, 32(5): 751–767
CrossRef Google scholar
[23]
Guo Y, Kakimoto  K, Ohsato H . Phase transitional behavior and piezoelectric properties of(Na0.5K0.5)NbO3–LiNbO3 ceramics. Applied Physics Letters, 2004, 85(18): 4121–4123
CrossRef Google scholar
[24]
Dai Y, Zhang  X, Zhou G . Phase transitional behavior in K0.5Na0.5NbO3–LiTaO3 ceramics. Applied Physics Letters, 2007, 90(26): 262903 (3 pages)
CrossRef Google scholar
[25]
Chu S Y, Water  W, Juang Y D , . Piezoelectric and dielectric characteristics of lithium potassium niobate ceramic system. Ferroelectrics, 2003, 297(1): 11–17
CrossRef Google scholar
[26]
Lin D, Kwok  K W, Chan  H L W. Double hysteresis loop and aging effect in K0.5Na0.5NbO3–K5.4Cu1.3Ta10O9 lead-free ceramics. Journal of the American Ceramic Society, 2009, 92(6): 1362–1365
CrossRef Google scholar
[27]
Ke S M, Huang  H T, Fan  H Q, . Antiferroelectric-like properties and enhanced polarization of Cu-doped K0.5Na0.5NbO3 piezoelectric ceramics. Applied Physics Letters, 2012, 101(8): 082901
CrossRef Google scholar
[28]
Chen K, Zhang  F, Jiao Y , . Effects of GeO2 addition on sintering and properties of (K0.5Na0.5)NbO3 ceramics. Journal of the American Ceramic Society, 2016, 99(5): 1681–1686
CrossRef Google scholar
[29]
Randall C A, Kim  N, Kucera J P , . Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics. Journal of the American Ceramic Society, 1998, 81(3): 677–688
CrossRef Google scholar
[30]
Zhao Z, Buscaglia  V, Viviani M , . Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics. Physical Review B: Condensed Matter and Materials Physics, 2004, 70(2): 024107
CrossRef Google scholar
[31]
Liu L, Huang  Y, Su C , . Space-charge relaxation and electrical conduction in K0.5Na0.5NbO3 at high temperatures. Applied Physics A: Materials Science & Processing, 2011, 104(4): 1047–1051
CrossRef Google scholar
[32]
Liu Z, Fan  H, Li M . High temperature stable dielectric properties of (K0.5Na0.5)0.985Bi0.015Nb0.99Cu0.01O3 ceramics with core–shell microstructures. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2015, 3(22): 5851–5858
CrossRef Google scholar
[33]
Zhou M, Lu  X, Yang D , . Induced core–shell structure and the electric properties of (K0.48Na0.52)0.95Li0.05Nb0.95Sb0.05O3 ceramics. Physical Chemistry Chemical Physics, 2017, 19(3): 1868–1874
CrossRef Pubmed Google scholar
[34]
Guiffard B, Boucher  E, Eyraud L , . Influence of donor co-doping by niobium or fluorine on the conductivity of Mn doped and Mg doped PZT ceramics. Journal of the European Ceramic Society, 2005, 25(12): 2487–2490
CrossRef Google scholar
[35]
Rafiq M A, Costa  M E, Tkach  A, . Impedance analysis and conduction mechanisms of lead free potassium sodium niobate (KNN) single crystals and polycrystals: a comparison study. Crystal Growth & Design, 2015, 15(3): 1289–1294
CrossRef Google scholar

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 51332003).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(575 KB)

Accesses

Citations

Detail

Sections
Recommended

/