Ga2O3 doping and vacancy effect in KNN--LT lead-free piezoceramics

Zhi TAN , Jie XING , Laiming JIANG , Jianguo ZHU , Bo WU

Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (4) : 344 -352.

PDF (575KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (4) : 344 -352. DOI: 10.1007/s11706-017-0403-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Ga2O3 doping and vacancy effect in KNN--LT lead-free piezoceramics

Author information +
History +
PDF (575KB)

Abstract

Ga2O3 was doped into 0.95(K0.48Na0.52)NbO3–0.05LiTaO3 (KNN–LT) ceramics and its influences on the sintering behavior, phase structure and electrical properties of ceramics were studied. Firstly, SEM observation exhibits that more and more glass phase appears in ceramics with the gradual addition of Ga2O3, which determines the continuous decrease in sintering temperatures. And the addition of Ga2O3 is also found to increase the orthorhombic–tetragonal transition temperature (TOT) of system to a higher level. Secondly, both the density and the coercive field (EC) of ceramics increase firstly and then decrease with increasing the Ga2O3 content, and the KNN–LT–xGa sample at x = 0.004 shows a pinched PE hysteresis loop. Finally, the impedance characteristics of KNN–LT–xGa ceramics were investigated at different temperatures, revealing a typical vacancy related conduction mechanism. This work demonstrates that Ga2O3 is a good sintering aid for KNN-based ceramics, and the vacancy plays an important role in the sintering and electrical behaviors of ceramics.

Keywords

lead-free piezoceramics / Ga 2O 3 / phase structure / piezoelectric properties / sintering behavior

Cite this article

Download citation ▾
Zhi TAN, Jie XING, Laiming JIANG, Jianguo ZHU, Bo WU. Ga2O3 doping and vacancy effect in KNN--LT lead-free piezoceramics. Front. Mater. Sci., 2017, 11(4): 344-352 DOI:10.1007/s11706-017-0403-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jaffe BRoth  R SMarzullo  S. Properties of piezoelectric ceramics in the solid-solution series lead titanate–lead zirconate–lead oxide: tin oxide and lead titanate–lead hafnate. Journal of Research of the National Bureau of Standards195555(5): 239–254

[2]

Jaffe B. Piezoelectric Ceramics. India: Academic Press1971, Chapter 7

[3]

Shrout T RZhang  S J. Lead-free piezoelectric ceramics: Alternatives for PZT? Journal of Electroceramics200719(1): 113–126

[4]

Rödel JJo  WSeifert K T P . Perspective on the development of lead-free piezoceramics. Journal of the American Ceramic Society200992(6): 1153–1177

[5]

Saito YTakao  HTani T . Lead-free piezoceramics. Nature2004432(7013): 84–87

[6]

Wu JXiao  DZhu J . Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chemical Reviews2015115(7): 2559–2595

[7]

Li J FWang  KZhu F Y . (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects. Processing technologies, and remaining challenges. Journal of the American Ceramic Society201396(12): 3677–3696

[8]

Matsubara MYamaguchi  TKikuta K . Sintering and piezoelectric properties of potassium sodium niobate ceramics with newly developed sintering aid. Japanese Journal of Applied Physics200544(1A): 258–263

[9]

Rubio-Marcos FRomero  J JNavarro-Rojero  M G. Effect of ZnO on the structure, microstructure and electrical properties of KNN-modified piezoceramics. Journal of the European Ceramic Society200929(14): 3045–3052

[10]

Matsubara MYamaguchi  TSakamoto W . Processing and piezoelectric properties of lead-free (K, Na)(Nb, Ta)O3 ceramics. Journal of the American Ceramic Society200588(5): 1190–1196

[11]

Mgbemere H EHerber  R PSchneider  G A. Effect of MnO2 on the dielectric and piezoelectric properties of alkaline niobate based lead free piezoelectric ceramics. Journal of the European Ceramic Society200929(9): 1729–1733

[12]

Bernard JBenčan  ARojac T . Low-temperature sintering of K0.5Na0.5NbO3 ceramics. Journal of the American Ceramic Society200891(7): 2409–2411

[13]

Zuo RRödel  JChen R . Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics. Journal of the American Ceramic Society200689(6): 2010–2015

[14]

Chen KZhou  JZhang F . Screening sintering aids for (K0.5Na0.5)NbO3 ceramics. Journal of the American Ceramic Society201598(6): 1698–1701

[15]

Rao M V M Kao C F . (Bi0.5Na0.5)0.93Ba0.07TiO3 lead-free ceramics with addition of Ga2O3. Physica B: Condensed Matter2008403(19–20): 3596–3598

[16]

Jiang YQin  BZhao Y . Microstructure, dielectric, and piezoelectric properties of 0.38Bi(GaxSc1−x)O3–0.62PbTiO3 high temperature piezoelectric ceramics. physica status solidi (RRL) - Rapid Research Letters20082(1): 28–30

[17]

Ma JLiu  XLi W . High piezoelectric coefficient and temperature stability of Ga2O3-doped (Ba0.99Ca0.01)(Zr0.02Ti0.98)O3 lead-free ceramics by low-temperature sintering. Journal of Alloys and Compounds2013581: 642–645

[18]

Hayati RBarzegar  A. Microstructure and electrical properties of lead free potassium sodium niobate piezoceramics with nano ZnO additive. Materials Science and Engineering B2010172(2): 121–126

[19]

Wu J. High piezoelectricity in low-temperature sintering potassium–sodium niobate-based lead-free ceramics. RSC Advances20144(96): 53490–53497

[20]

Du HLiu  DTang F . Microstructure, piezoelectric, and ferroelectric properties of Bi2O3-added (K0.5Na0.5)NbO3 lead-free ceramics. Journal of the American Ceramic Society200790(9): 2824–2829

[21]

Gao DKwok  K WLin  D. Microstructure, electrical properties of CeO2-doped (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics. Journal of Materials Science200944(10): 2466–2470

[22]

Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography197632(5): 751–767

[23]

Guo YKakimoto  KOhsato H . Phase transitional behavior and piezoelectric properties of(Na0.5K0.5)NbO3–LiNbO3 ceramics. Applied Physics Letters200485(18): 4121–4123

[24]

Dai YZhang  XZhou G . Phase transitional behavior in K0.5Na0.5NbO3–LiTaO3 ceramics. Applied Physics Letters200790(26): 262903 (3 pages)

[25]

Chu S YWater  WJuang Y D . Piezoelectric and dielectric characteristics of lithium potassium niobate ceramic system. Ferroelectrics2003297(1): 11–17

[26]

Lin DKwok  K WChan  H L W. Double hysteresis loop and aging effect in K0.5Na0.5NbO3–K5.4Cu1.3Ta10O9 lead-free ceramics. Journal of the American Ceramic Society200992(6): 1362–1365

[27]

Ke S MHuang  H TFan  H Q. Antiferroelectric-like properties and enhanced polarization of Cu-doped K0.5Na0.5NbO3 piezoelectric ceramics. Applied Physics Letters2012101(8): 082901

[28]

Chen KZhang  FJiao Y . Effects of GeO2 addition on sintering and properties of (K0.5Na0.5)NbO3 ceramics. Journal of the American Ceramic Society201699(5): 1681–1686

[29]

Randall C AKim  NKucera J P . Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics. Journal of the American Ceramic Society199881(3): 677–688

[30]

Zhao ZBuscaglia  VViviani M . Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics. Physical Review B: Condensed Matter and Materials Physics200470(2): 024107

[31]

Liu LHuang  YSu C . Space-charge relaxation and electrical conduction in K0.5Na0.5NbO3 at high temperatures. Applied Physics A: Materials Science & Processing2011104(4): 1047–1051

[32]

Liu ZFan  HLi M . High temperature stable dielectric properties of (K0.5Na0.5)0.985Bi0.015Nb0.99Cu0.01O3 ceramics with core–shell microstructures. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices20153(22): 5851–5858

[33]

Zhou MLu  XYang D . Induced core–shell structure and the electric properties of (K0.48Na0.52)0.95Li0.05Nb0.95Sb0.05O3 ceramics. Physical Chemistry Chemical Physics201719(3): 1868–1874

[34]

Guiffard BBoucher  EEyraud L . Influence of donor co-doping by niobium or fluorine on the conductivity of Mn doped and Mg doped PZT ceramics. Journal of the European Ceramic Society200525(12): 2487–2490

[35]

Rafiq M ACosta  M ETkach  A. Impedance analysis and conduction mechanisms of lead free potassium sodium niobate (KNN) single crystals and polycrystals: a comparison study. Crystal Growth & Design201515(3): 1289–1294

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (575KB)

1041

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/