Regulation of RAW 264.7 macrophages behavior on anodic TiO2 nanotubular arrays

Shenglian YAO, Xujia FENG, Wenhao LI, Lu-Ning WANG, Xiumei WANG

PDF(436 KB)
PDF(436 KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (4) : 318-327. DOI: 10.1007/s11706-017-0402-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Regulation of RAW 264.7 macrophages behavior on anodic TiO2 nanotubular arrays

Author information +
History +

Abstract

Titanium (Ti) implants with TiO2 nanotubular arrays on the surface could regulate cells adhesion, proliferation and differentiation to determine the bone integration. Additionally, the regulation of immune cells could improve osteogenesis or lead in appropriate immune reaction. Thus, we evaluate the behavior of RAW 264.7 macrophages on TiO2 nanotubular arrays with a wide range diameter (from 20 to 120 nm) fabricated by an electrochemical anodization process. In this work, the proliferation, cell viability and cytokine/chemokine secretion were evaluated by CCK-8, live/dead staining and ELISA, respectively. SEM and confocal microscopy were used to observe the adhesion morphology. Results showed that the small size nanotube surface was benefit for the macrophages adhesion and proliferation, while larger size surface could reduce the inflammatory response. These findings contribute to the design of immune-regulating Ti implants surface that supports successful implantation.

Keywords

RAW 264.7 macrophages / nanotopography / TiO2 nanotubular arrays / inflammation

Cite this article

Download citation ▾
Shenglian YAO, Xujia FENG, Wenhao LI, Lu-Ning WANG, Xiumei WANG. Regulation of RAW 264.7 macrophages behavior on anodic TiO2 nanotubular arrays. Front. Mater. Sci., 2017, 11(4): 318‒327 https://doi.org/10.1007/s11706-017-0402-z

References

[1]
Wang L N, Jin M, Zheng Y, . Nanotubular surface modification of metallic implants via electrochemical anodization technique. International Journal of Nanomedicine, 2014, 9(1): 4421–4435
CrossRef Pubmed Google scholar
[2]
Minagar S, Berndt C C, Wang J, . A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomaterialia, 2012, 8(8): 2875–2888
CrossRef Pubmed Google scholar
[3]
Wang G, Moya S, Lu Z, . Enhancing orthopedic implant bioactivity: refining the nanotopography. Nanomedicine, 2015, 10(8): 1327–1341 
CrossRef Pubmed Google scholar
[4]
Yao C, Webster T J. Anodization: a promising nano-modification technique of titanium implants for orthopedic applications. Journal of Nanoscience and Nanotechnology, 2006, 6(9–10): 2682– 2692 
CrossRef Pubmed Google scholar
[5]
Kulkarni M, Mazare A, Gongadze E, . Titanium nano-structures for biomedical applications. Nanotechnology, 2015, 26(6): 062002
CrossRef Pubmed Google scholar
[6]
Nair M, Elizabeth E. Applications of titania nanotubes in bone biology. Journal of Nanoscience and Nanotechnology, 2015, 15(2): 939–955 
CrossRef Pubmed Google scholar
[7]
Oh S, Brammer K S, Li Y S J, . Stem cell fate dictated solely by altered nanotube dimension. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(7): 2130–2135
CrossRef Pubmed Google scholar
[8]
Park J, Bauer S, Schlegel K A, . TiO2 nanotube surfaces: 15 nm — an optimal length scale of surface topography for cell adhesion and differentiation. Small, 2009, 5(6): 666–671 
CrossRef Pubmed Google scholar
[9]
Thomas M V, Puleo D A. Infection, inflammation, and bone regeneration: a paradoxical relationship. Journal of Dental Research, 2011, 90(9): 1052–1061 
CrossRef Pubmed Google scholar
[10]
Abdelmagid S M, Barbe M F, Safadi F F. Role of inflammation in the aging bones. Life Sciences, 2015, 123: 25–34 
CrossRef Pubmed Google scholar
[11]
Chen Z, Klein T, Murray R Z, . Osteoimmunomodulation for the development of advanced bone biomaterials. Materials Today, 2016, 19(6): 304–321 
CrossRef Google scholar
[12]
Miron R J, Bosshardt D D. OsteoMacs: Key players around bone biomaterials. Biomaterials, 2016, 82: 1–19 160;
CrossRef Pubmed Google scholar
[13]
Franz S, Rammelt S, Scharnweber D, . Immune responses to implants — a review of the implications for the design of immunomodulatory biomaterials. Biomaterials, 2011, 32(28): 6692–6709 
CrossRef Pubmed Google scholar
[14]
Smith B S, Capellato P, Kelley S, . Reduced in vitro immune response on titania nanotube arrays compared to titanium surface. Biomaterials Science, 2013, 1(3): 322–332 
CrossRef Google scholar
[15]
Rajyalakshmi A, Ercan B, Balasubramanian K, . Reduced adhesion of macrophages on anodized titanium with select nanotube surface features. International Journal of Nanomedicine, 2011, 6(6): 1765–1771 
Pubmed
[16]
Lü W L, Wang N, Gao P, . Effects of anodic titanium dioxide nanotubes of different diameters on macrophage secretion and expression of cytokines and chemokines. Cell Proliferation, 2015, 48(1): 95–104 
CrossRef Pubmed Google scholar
[17]
Neacsu P, Mazare A, Cimpean A, . Reduced inflammatory activity of RAW 264.7 macrophages on titania nanotube modified Ti surface. The International Journal of Biochemistry & Cell Biology, 2014, 55: 187–195
CrossRef Pubmed Google scholar
[18]
Neacsu P, Mazare A, Schmuki P, . Attenuation of the macrophage inflammatory activity by TiO2 nanotubes via inhibition of MAPK and NF-κB pathways. International Journal of Nanomedicine, 2015, 10: 6455–6467 
Pubmed
[19]
Jin S, Chamberlain L M, Brammer K S, . Macrophage inflammatory response to TiO2 nanotube surfaces. Journal of Biomaterials and Nanobiotechnology, 2011, 2(3): 293–300
CrossRef Google scholar
[20]
Ma Q L, Zhao L Z, Liu R R, . Improved implant osseointegration of a nanostructured titanium surface via mediation of macrophage polarization. Biomaterials, 2014, 35(37): 9853–9867
CrossRef Pubmed Google scholar
[21]
Lee S, Choi J, Shin S, . Analysis on migration and activation of live macrophages on transparent flat and nanostructured titanium. Acta Biomaterialia, 2011, 7(5): 2337–2344
CrossRef Pubmed Google scholar
[22]
Liu X, Liu R, Cao B, . Subcellular cell geometry on micropillars regulates stem cell differentiation. Biomaterials, 2016, 111: 27–39 
CrossRef Pubmed Google scholar
[23]
Lv L, Liu Y, Zhang P, . The nanoscale geometry of TiO2 nanotubes influences the osteogenic differentiation of human adipose-derived stem cells by modulating H3K4 trimethylation. Biomaterials, 2015, 39: 193–205 160;
CrossRef Pubmed Google scholar
[24]
Biggs M J, Richards R G, Dalby M J. Nanotopographical modification: a regulator of cellular function through focal adhesions. Nanomedicine: Nanotechnology, Biology, and Medicine, 2010, 6(5): 619–633 
CrossRef Pubmed Google scholar
[25]
McNamara L E, McMurray R J, Biggs M J P, . Nanotopographical control of stem cell differentiation. Journal of Tissue Engineering, 2010, 1: 120623 160;
CrossRef Pubmed Google scholar

Acknowledgements

This work was in part supported by the China Postdoctoral Science Foundation (2016M591075) and the Fundamental Research Funds for the Central Universities (2302016FRF-TP-16-001A1).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(436 KB)

Accesses

Citations

Detail

Sections
Recommended

/