Folate-conjugated pH-responsive nanocarrier designed for active tumor targeting and controlled release of doxorubicin

Lulu WEI , Beibei LU , Lin CUI , Xueying PENG , Jianning WU , Deqiang LI , Zhiyong LIU , Xuhong GUO

Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (4) : 328 -343.

PDF (624KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (4) : 328 -343. DOI: 10.1007/s11706-017-0401-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Folate-conjugated pH-responsive nanocarrier designed for active tumor targeting and controlled release of doxorubicin

Author information +
History +
PDF (624KB)

Abstract

A novel type of amphiphilic pH-responsive folate-poly(ε-caprolactone)-block-poly(2-hydroxyethylmethacrylate)-co-poly(2-(dimethylamino)-ethylmethacrylate) (FA-PCL-b-P(HEMA-co-DMAEMA)) (MFP) block copolymers were designed and synthesized via atom transfer radical polymerization (ATRP) and ring opening polymerization (ROP) techniques. The molecular structures of the copolymers were confirmed with1H NMR, FTIR and GPC measurements. The critical micelle concentration (CMC) of MFP in aqueous solution was extremely low (about 6.54 mg/L). Thein vitro release behavior of DOX-loaded micelles was significantly accelerated when the pH value of solution decreased from 7.4 to 5.0. In vitro antitumor efficiency was evaluated by incubating DOX- loaded micelles with Hela cells. The results demonstrated that this copolymer possessed excellent biocompatibility, and FA-decorated micelles MFP showed higher cellular uptake than those micelles without the FA moiety, indicating their unique targetability. These folate-conjugated biodegradable micelles are highly promising for targeted cancer chemothe-rapy.

Keywords

amphiphilic polymer / pH-sensitive / active targeting / drug delivery system / folic acid

Cite this article

Download citation ▾
Lulu WEI, Beibei LU, Lin CUI, Xueying PENG, Jianning WU, Deqiang LI, Zhiyong LIU, Xuhong GUO. Folate-conjugated pH-responsive nanocarrier designed for active tumor targeting and controlled release of doxorubicin. Front. Mater. Sci., 2017, 11(4): 328-343 DOI:10.1007/s11706-017-0401-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen GRoy  IYang C . Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chemical Reviews2016116(5): 2826–2885

[2]

Nicolas JMura  SBrambilla D . Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chemical Society Reviews201342(3): 1147–1235

[3]

Hunter A CMoghimi  S M. Smart polymers in drug delivery: a biological perspective. Polymer Chemistry20178(1): 41–51

[4]

Qin S YZhang  A QCheng  S X. Drug self-delivery systems for cancer therapy. Biomaterials2017112: 234–247

[5]

Choi W IYoon  K CIm  S K. Remarkably enhanced stability and function of core/shell nanoparticles composed of a lecithin core and a pluronic shell layer by photo-crosslinking the shell layer: in vitro and in vivo study. Acta Biomaterialia20106(7): 2666–2673

[6]

Cai GZhang  HLiu P . Triggered disassembly of hierarchically assembled onion-like micelles into the pristine core–shell micelles via a small change in pH. Acta Biomaterialia20117(10): 3729–3737

[7]

Song W TTang  Z HZhang  D W. A cooperative polymeric platform for tumor-targeted drug delivery. Chemical Science20167(1): 728–736

[8]

Li H MFu  YZhang T . Rational design of polymeric hybrid micelles with highly tunable properties to co-deliver microRNA-34a and vismodegib for melanoma therapy. Advanced Functional Materials201525(48): 7457–7469

[9]

Taghdisi S MDanesh  N MRamezani  M. Double targeting and aptamer-assisted controlled release delivery of epirubicin to cancer cells by aptamers-based dendrimer in vitro and in vivo. European Journal of Pharmaceutics and Biopharmaceutics2016102: 152–158

[10]

Zhang C YChen  QWu W S . Synthesis and evaluation of cholesterol-grafted PEGylated peptides with pH-triggered property as novel drug carriers for cancer chemotherapy. Colloids and Surfaces B: Biointerfaces2016142: 55–64

[11]

Suo AQian  JZhang Y . Comb-like amphiphilic polypeptide-based copolymer nanomicelles for co-delivery of doxorubicin and P-gp siRNA into MCF-7 cells. Materials Science and Engineering C201662: 564–573

[12]

Lv YTao  LAnnie Bligh S W . Targeted delivery and controlled release of doxorubicin into cancer cells using a multifunctional graphene oxide. Materials Science and Engineering C201659: 652–660

[13]

Peetla CVijayaraghavalu  SLabhasetwar V . Biophysics of cell membrane lipids in cancer drug resistance: Implications for drug transport and drug delivery with nanoparticles. Advanced Drug Delivery Reviews201365(13–14): 1686–1698

[14]

Li LLu  B BWu  J N. Synthesis and self-assembly behavior of thermo-responsive star-shaped POSS-(PCL-P(MEO2MA-co-PEGMA))16 inorganic/organic hybrid block copolymers with tunable lower critical solution temperature. New Journal of Chemistry201640(5): 4761–4768

[15]

Wang MLi  JLi X . Magnetically and pH dual responsive dendrosomes for tumor accumulation enhanced folate-targeted hybrid drug delivery. Journal of Controlled Release2016232: 161–174

[16]

Li GYan  QXia H . Therapeutic-ultrasound-triggered shape memory of a melamine-enhanced poly(vinyl alcohol) physical hydrogel. ACS Applied Materials & Interfaces20157(22): 12067–12073

[17]

Choi S KThomas  TLi M H . Light-controlled release of caged doxorubicin from folate receptor-targeting PAMAM dendrimer nanoconjugate. Chemical Communications201046(15): 2632–2634

[18]

Yan QYuan  JCai Z . Voltage-responsive vesicles based on orthogonal assembly of two homopolymers. Journal of the American Chemical Society2010132(27): 9268–9270

[19]

Sun C YLiu  YDu J Z . Facile generation of tumor-pH-labile linkage-bridged block copolymers for chemotherapeutic delivery. Angewandte Chemie International Edition201655(3): 1010–1014

[20]

Li DBu  YZhang L . Facile construction of pH- and redox-responsive micelles from a biodegradable poly(β-hydroxyl amine) for drug delivery. Biomacromolecules201617(1): 291–300

[21]

Li YLiu  GWang X . Enzyme-responsive polymeric vesicles for bacterial-strain-selective delivery of antimicrobial agents. Angewandte Chemie International Edition201655(5): 1760–1764

[22]

Maeda HNakamura  HFang J . The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Advanced Drug Delivery Reviews201365(1): 71–79

[23]

Bose R J C Lee S H Park H. Biofunctionalized nanoparticles: an emerging drug delivery platform for various disease treatments. Drug Discovery Today201621(8): 1303–1312

[24]

Shi JKantoff  P WWooster  R. Cancer nanomedicine: progress, challenges and opportunities. Nature Reviews Cancer201717(1): 20–37 

[25]

Li H JDu  J ZDu  X J. Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proceedings of the National Academy of Sciences of the United States of America2016113(15): 4164–4169

[26]

Yin QTang  LCai K . Pamidronate functionalized nanoconjugates for targeted therapy of focal skeletal malignant osteolysis. Proceedings of the National Academy of Sciences of the United States of America2016113(32): E4601–E4609

[27]

Ma YHuang  JSong S . Cancer-targeted nanotheranostics: Recent advances and perspectives. Small201612(36): 4936–4954

[28]

Das ATheato  P. Activated ester containing polymers: opportunities and challenges for the design of functional macromolecules. Chemical Reviews2016116(3): 1434–1495

[29]

Li H JDu  J ZLiu  J. Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: instantaneous size switching and improved tumor penetration. ACS Nano201610(7): 6753–6761

[30]

Ata SBasak  SMal D . Synthesis and self-assembly behavior of POSS tethered amphiphilic polymer based on poly(caprolactone) (PCL) grafted with poly(acrylic acid) (PAA) via ROP, ATRP, and CuAAC reaction. Journal of Polymer Research201724(2): 2–13

[31]

Fu S XYang  G QWang  J. Acid-degradable poly(ortho ester urethanes) copolymers for potential drug carriers: Preparation, characterization, in vitro and in vivo evaluation. Polymer2017114: 1–14

[32]

DiLauro A MZhang  HBaker M S . Accessibility of responsive end-caps in films composed of stimuli-responsive, depolymerizable poly(phthalaldehydes). Macromolecules201346(18): 7257–7265

[33]

Seo WPhillips  S T. Patterned plastics that change physical structure in response to applied chemical signals. Journal of the American Chemical Society2010132(27): 9234–9235

[34]

Pan JLi  GChen Z . Alternative block polyurethanes based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(ethylene glycol). Biomaterials200930(16): 2975–2984

[35]

Saad G RElsawy  M AElsabee  M Z. Preparation, characterization and antimicrobial activity of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-g-poly(N-vinylpyrrolidone) copolymers. Polymer-Plastics Technology and Engineering201251(11): 1113–1121

[36]

Li ZYuan  DFan X . Poly(ethylene glycol) conjugated poly(lactide)-based polyelectrolytes: synthesis and formation of stable self-assemblies induced by stereocomplexation. Langmuir201531(8): 2321–2333

[37]

Xu C FZhang  H BSun  C Y. Tumor acidity-sensitive linkage-bridged block copolymer for therapeutic siRNA delivery. Biomaterials201688: 48–59

[38]

Khodaverdi EGharechahi  MAlibolandi M . Self-assembled supramolecular hydrogel based on PCL-PEG-PCL triblock copolymer and-cyclodextrin inclusion complex for sustained delivery of dexamethasone. International Journal of Pharmaceutical Investigation20166(2): 78–85

[39]

Wang MZhou  CChen J . Multifunctional biocompatible and biodegradable folic acid conjugated poly(ε-caprolactone)-polypeptide copolymer vesicles with excellent antibacterial activities. Bioconjugate Chemistry201526(4): 725–734

[40]

Sun C YShen  SXu C F . Tumor acidity-sensitive polymeric vector for active targeted siRNA delivery. Journal of the American Chemical Society2015137(48): 15217–15224

[41]

Wang B BGalliford  C VLow  P S. Guiding principles in the design of ligand-targeted nanomedicines. Nanomedicine20149(2): 313–330

[42]

Qiu L YYan  LZhang L . Folate-modified poly(2-ethyl-2-oxazoline) as hydrophilic corona in polymeric micelles for enhanced intracellular doxorubicin delivery. International Journal of Pharmaceutics2013456(2): 315–324

[43]

Qian JXu  MSuo A . Folate-decorated hydrophilic three-arm star-block terpolymer as a novel nanovehicle for targeted co-delivery of doxorubicin and Bcl-2 siRNA in breast cancer therapy. Acta Biomaterialia201515: 102–116

[44]

Zhang YZhou  JYang C . Folic acid-targeted disulfide-based cross-linking micelle for enhanced drug encapsulation stability and site-specific drug delivery against tumors. International Journal of Nanomedicine201611: 1119–1130

[45]

Yhee J YSong  SLee S J . Cancer-targeted MDR-1 siRNA delivery using self-cross-linked glycol chitosan nanoparticles to overcome drug resistance. Journal of Controlled Release2015198: 1–9

[46]

Eloy J OPetrilli  RChesca D L . Anti-HER2 immunoliposomes for co-delivery of paclitaxel and rapamycin for breast cancer therapy. European Journal of Pharmaceutics and Biopharmaceutics2017115: 159–167

[47]

Palanca-Wessels M C Booth G C Convertine A J . Antibody targeting facilitates effective intratumoral siRNA nanoparticle delivery to HER2-overexpressing cancer cells. Oncotarget, 20167(8): 9561–9575

[48]

Feng CGu  LYang D . Size-controllable gold nanoparticles stabilized by PDEAEMA-based double hydrophilic graft copolymer. Polymer200950(16): 3990–3996

[49]

Lu BLi  LWu J . Synthesis of a dual pH and temperature responsive star triblock copolymer based on β-cyclodextrins for controlled intracellular doxorubicin delivery release. New Journal of Chemistry201640(10): 8397–8407

[50]

Matyjaszewski KTsarevsky  N V. Macromolecular engineering by atom transfer radical polymerization. Journal of the American Chemical Society2014136(18): 6513–6533

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (624KB)

1029

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/