Folate-conjugated pH-responsive nanocarrier designed for active tumor targeting and controlled release of doxorubicin

Lulu WEI, Beibei LU, Lin CUI, Xueying PENG, Jianning WU, Deqiang LI, Zhiyong LIU, Xuhong GUO

PDF(624 KB)
PDF(624 KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (4) : 328-343. DOI: 10.1007/s11706-017-0401-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Folate-conjugated pH-responsive nanocarrier designed for active tumor targeting and controlled release of doxorubicin

Author information +
History +

Abstract

A novel type of amphiphilic pH-responsive folate-poly(ε-caprolactone)-block-poly(2-hydroxyethylmethacrylate)-co-poly(2-(dimethylamino)-ethylmethacrylate) (FA-PCL-b-P(HEMA-co-DMAEMA)) (MFP) block copolymers were designed and synthesized via atom transfer radical polymerization (ATRP) and ring opening polymerization (ROP) techniques. The molecular structures of the copolymers were confirmed with1H NMR, FTIR and GPC measurements. The critical micelle concentration (CMC) of MFP in aqueous solution was extremely low (about 6.54 mg/L). Thein vitro release behavior of DOX-loaded micelles was significantly accelerated when the pH value of solution decreased from 7.4 to 5.0. In vitro antitumor efficiency was evaluated by incubating DOX- loaded micelles with Hela cells. The results demonstrated that this copolymer possessed excellent biocompatibility, and FA-decorated micelles MFP showed higher cellular uptake than those micelles without the FA moiety, indicating their unique targetability. These folate-conjugated biodegradable micelles are highly promising for targeted cancer chemothe-rapy.

Keywords

amphiphilic polymer / pH-sensitive / active targeting / drug delivery system / folic acid

Cite this article

Download citation ▾
Lulu WEI, Beibei LU, Lin CUI, Xueying PENG, Jianning WU, Deqiang LI, Zhiyong LIU, Xuhong GUO. Folate-conjugated pH-responsive nanocarrier designed for active tumor targeting and controlled release of doxorubicin. Front. Mater. Sci., 2017, 11(4): 328‒343 https://doi.org/10.1007/s11706-017-0401-0

References

[1]
Chen G, Roy  I, Yang C , . Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chemical Reviews, 2016, 116(5): 2826–2885
CrossRef Pubmed Google scholar
[2]
Nicolas J, Mura  S, Brambilla D , . Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chemical Society Reviews, 2013, 42(3): 1147–1235
CrossRef Pubmed Google scholar
[3]
Hunter A C, Moghimi  S M. Smart polymers in drug delivery: a biological perspective. Polymer Chemistry, 2017, 8(1): 41–51
CrossRef Google scholar
[4]
Qin S Y, Zhang  A Q, Cheng  S X, . Drug self-delivery systems for cancer therapy. Biomaterials, 2017, 112: 234–247
CrossRef Pubmed Google scholar
[5]
Choi W I, Yoon  K C, Im  S K, . Remarkably enhanced stability and function of core/shell nanoparticles composed of a lecithin core and a pluronic shell layer by photo-crosslinking the shell layer: in vitro and in vivo study. Acta Biomaterialia, 2010, 6(7): 2666–2673
CrossRef Pubmed Google scholar
[6]
Cai G, Zhang  H, Liu P , . Triggered disassembly of hierarchically assembled onion-like micelles into the pristine core–shell micelles via a small change in pH. Acta Biomaterialia, 2011, 7(10): 3729–3737
CrossRef Pubmed Google scholar
[7]
Song W T, Tang  Z H, Zhang  D W, . A cooperative polymeric platform for tumor-targeted drug delivery. Chemical Science, 2016, 7(1): 728–736
CrossRef Google scholar
[8]
Li H M, Fu  Y, Zhang T , . Rational design of polymeric hybrid micelles with highly tunable properties to co-deliver microRNA-34a and vismodegib for melanoma therapy. Advanced Functional Materials, 2015, 25(48): 7457–7469
CrossRef Google scholar
[9]
Taghdisi S M, Danesh  N M, Ramezani  M, . Double targeting and aptamer-assisted controlled release delivery of epirubicin to cancer cells by aptamers-based dendrimer in vitro and in vivo. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 102: 152–158
CrossRef Pubmed Google scholar
[10]
Zhang C Y, Chen  Q, Wu W S , . Synthesis and evaluation of cholesterol-grafted PEGylated peptides with pH-triggered property as novel drug carriers for cancer chemotherapy. Colloids and Surfaces B: Biointerfaces, 2016, 142: 55–64
CrossRef Pubmed Google scholar
[11]
Suo A, Qian  J, Zhang Y , . Comb-like amphiphilic polypeptide-based copolymer nanomicelles for co-delivery of doxorubicin and P-gp siRNA into MCF-7 cells. Materials Science and Engineering C, 2016, 62: 564–573
CrossRef Pubmed Google scholar
[12]
Lv Y, Tao  L, Annie Bligh S W , . Targeted delivery and controlled release of doxorubicin into cancer cells using a multifunctional graphene oxide. Materials Science and Engineering C, 2016, 59: 652–660
CrossRef Pubmed Google scholar
[13]
Peetla C, Vijayaraghavalu  S, Labhasetwar V . Biophysics of cell membrane lipids in cancer drug resistance: Implications for drug transport and drug delivery with nanoparticles. Advanced Drug Delivery Reviews, 2013, 65(13–14): 1686–1698
CrossRef Pubmed Google scholar
[14]
Li L, Lu  B B, Wu  J N, . Synthesis and self-assembly behavior of thermo-responsive star-shaped POSS-(PCL-P(MEO2MA-co-PEGMA))16 inorganic/organic hybrid block copolymers with tunable lower critical solution temperature. New Journal of Chemistry, 2016, 40(5): 4761–4768
CrossRef Google scholar
[15]
Wang M, Li  J, Li X , . Magnetically and pH dual responsive dendrosomes for tumor accumulation enhanced folate-targeted hybrid drug delivery. Journal of Controlled Release, 2016, 232: 161–174
CrossRef Pubmed Google scholar
[16]
Li G, Yan  Q, Xia H , . Therapeutic-ultrasound-triggered shape memory of a melamine-enhanced poly(vinyl alcohol) physical hydrogel. ACS Applied Materials & Interfaces, 2015, 7(22): 12067–12073
CrossRef Pubmed Google scholar
[17]
Choi S K, Thomas  T, Li M H , . Light-controlled release of caged doxorubicin from folate receptor-targeting PAMAM dendrimer nanoconjugate. Chemical Communications, 2010, 46(15): 2632–2634
CrossRef Pubmed Google scholar
[18]
Yan Q, Yuan  J, Cai Z , . Voltage-responsive vesicles based on orthogonal assembly of two homopolymers. Journal of the American Chemical Society, 2010, 132(27): 9268–9270
CrossRef Pubmed Google scholar
[19]
Sun C Y, Liu  Y, Du J Z , . Facile generation of tumor-pH-labile linkage-bridged block copolymers for chemotherapeutic delivery. Angewandte Chemie International Edition, 2016, 55(3): 1010–1014
CrossRef Pubmed Google scholar
[20]
Li D, Bu  Y, Zhang L , . Facile construction of pH- and redox-responsive micelles from a biodegradable poly(β-hydroxyl amine) for drug delivery. Biomacromolecules, 2016, 17(1): 291–300
CrossRef Pubmed Google scholar
[21]
Li Y, Liu  G, Wang X , . Enzyme-responsive polymeric vesicles for bacterial-strain-selective delivery of antimicrobial agents. Angewandte Chemie International Edition, 2016, 55(5): 1760–1764
CrossRef Pubmed Google scholar
[22]
Maeda H, Nakamura  H, Fang J . The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Advanced Drug Delivery Reviews, 2013, 65(1): 71–79
CrossRef Pubmed Google scholar
[23]
Bose R J C ,  Lee S H ,  Park H. Biofunctionalized nanoparticles: an emerging drug delivery platform for various disease treatments. Drug Discovery Today, 2016, 21(8): 1303–1312
CrossRef Pubmed Google scholar
[24]
Shi J, Kantoff  P W, Wooster  R, . Cancer nanomedicine: progress, challenges and opportunities. Nature Reviews Cancer, 2017, 17(1): 20–37 
CrossRef Pubmed Google scholar
[25]
Li H J, Du  J Z, Du  X J, . Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(15): 4164–4169
CrossRef Pubmed Google scholar
[26]
Yin Q, Tang  L, Cai K , . Pamidronate functionalized nanoconjugates for targeted therapy of focal skeletal malignant osteolysis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(32): E4601–E4609
CrossRef Pubmed Google scholar
[27]
Ma Y, Huang  J, Song S , . Cancer-targeted nanotheranostics: Recent advances and perspectives. Small, 2016, 12(36): 4936–4954
CrossRef Pubmed Google scholar
[28]
Das A, Theato  P. Activated ester containing polymers: opportunities and challenges for the design of functional macromolecules. Chemical Reviews, 2016, 116(3): 1434–1495
CrossRef Pubmed Google scholar
[29]
Li H J, Du  J Z, Liu  J, . Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: instantaneous size switching and improved tumor penetration. ACS Nano, 2016, 10(7): 6753–6761
CrossRef Pubmed Google scholar
[30]
Ata S, Basak  S, Mal D , . Synthesis and self-assembly behavior of POSS tethered amphiphilic polymer based on poly(caprolactone) (PCL) grafted with poly(acrylic acid) (PAA) via ROP, ATRP, and CuAAC reaction. Journal of Polymer Research, 2017, 24(2): 2–13
CrossRef Google scholar
[31]
Fu S X, Yang  G Q, Wang  J, . Acid-degradable poly(ortho ester urethanes) copolymers for potential drug carriers: Preparation, characterization, in vitro and in vivo evaluation. Polymer, 2017, 114: 1–14
CrossRef Google scholar
[32]
DiLauro A M, Zhang  H, Baker M S , . Accessibility of responsive end-caps in films composed of stimuli-responsive, depolymerizable poly(phthalaldehydes). Macromolecules, 2013, 46(18): 7257–7265
CrossRef Google scholar
[33]
Seo W, Phillips  S T. Patterned plastics that change physical structure in response to applied chemical signals. Journal of the American Chemical Society, 2010, 132(27): 9234–9235
CrossRef Pubmed Google scholar
[34]
Pan J, Li  G, Chen Z , . Alternative block polyurethanes based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(ethylene glycol). Biomaterials, 2009, 30(16): 2975–2984
CrossRef Pubmed Google scholar
[35]
Saad G R, Elsawy  M A, Elsabee  M Z. Preparation, characterization and antimicrobial activity of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-g-poly(N-vinylpyrrolidone) copolymers. Polymer-Plastics Technology and Engineering, 2012, 51(11): 1113–1121
CrossRef Google scholar
[36]
Li Z, Yuan  D, Fan X , . Poly(ethylene glycol) conjugated poly(lactide)-based polyelectrolytes: synthesis and formation of stable self-assemblies induced by stereocomplexation. Langmuir, 2015, 31(8): 2321–2333
CrossRef Pubmed Google scholar
[37]
Xu C F, Zhang  H B, Sun  C Y, . Tumor acidity-sensitive linkage-bridged block copolymer for therapeutic siRNA delivery. Biomaterials, 2016, 88: 48–59
CrossRef Pubmed Google scholar
[38]
Khodaverdi E, Gharechahi  M, Alibolandi M , . Self-assembled supramolecular hydrogel based on PCL-PEG-PCL triblock copolymer and-cyclodextrin inclusion complex for sustained delivery of dexamethasone. International Journal of Pharmaceutical Investigation, 2016, 6(2): 78–85
[39]
Wang M, Zhou  C, Chen J , . Multifunctional biocompatible and biodegradable folic acid conjugated poly(ε-caprolactone)-polypeptide copolymer vesicles with excellent antibacterial activities. Bioconjugate Chemistry, 2015, 26(4): 725–734
CrossRef Pubmed Google scholar
[40]
Sun C Y, Shen  S, Xu C F , . Tumor acidity-sensitive polymeric vector for active targeted siRNA delivery. Journal of the American Chemical Society, 2015, 137(48): 15217–15224
CrossRef Pubmed Google scholar
[41]
Wang B B, Galliford  C V, Low  P S. Guiding principles in the design of ligand-targeted nanomedicines. Nanomedicine, 2014, 9(2): 313–330
CrossRef Google scholar
[42]
Qiu L Y, Yan  L, Zhang L , . Folate-modified poly(2-ethyl-2-oxazoline) as hydrophilic corona in polymeric micelles for enhanced intracellular doxorubicin delivery. International Journal of Pharmaceutics, 2013, 456(2): 315–324
CrossRef Pubmed Google scholar
[43]
Qian J, Xu  M, Suo A , . Folate-decorated hydrophilic three-arm star-block terpolymer as a novel nanovehicle for targeted co-delivery of doxorubicin and Bcl-2 siRNA in breast cancer therapy. Acta Biomaterialia, 2015, 15: 102–116
CrossRef Pubmed Google scholar
[44]
Zhang Y, Zhou  J, Yang C , . Folic acid-targeted disulfide-based cross-linking micelle for enhanced drug encapsulation stability and site-specific drug delivery against tumors. International Journal of Nanomedicine, 2016, 11: 1119–1130
Pubmed
[45]
Yhee J Y, Song  S, Lee S J , . Cancer-targeted MDR-1 siRNA delivery using self-cross-linked glycol chitosan nanoparticles to overcome drug resistance. Journal of Controlled Release, 2015, 198: 1–9
CrossRef Pubmed Google scholar
[46]
Eloy J O, Petrilli  R, Chesca D L , . Anti-HER2 immunoliposomes for co-delivery of paclitaxel and rapamycin for breast cancer therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 115: 159–167
CrossRef Pubmed Google scholar
[47]
Palanca-Wessels M C ,  Booth G C ,  Convertine A J , . Antibody targeting facilitates effective intratumoral siRNA nanoparticle delivery to HER2-overexpressing cancer cells. Oncotarget, 2016, 7(8): 9561–9575
[48]
Feng C, Gu  L, Yang D , . Size-controllable gold nanoparticles stabilized by PDEAEMA-based double hydrophilic graft copolymer. Polymer, 2009, 50(16): 3990–3996
CrossRef Google scholar
[49]
Lu B, Li  L, Wu J , . Synthesis of a dual pH and temperature responsive star triblock copolymer based on β-cyclodextrins for controlled intracellular doxorubicin delivery release. New Journal of Chemistry, 2016, 40(10): 8397–8407
CrossRef Google scholar
[50]
Matyjaszewski K, Tsarevsky  N V. Macromolecular engineering by atom transfer radical polymerization. Journal of the American Chemical Society, 2014, 136(18): 6513–6533
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (Grant Nos. 21367022, 51662036 and 21664013) and the Bingtuan Innovation Team in Key Areas (2015BD003).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(624 KB)

Accesses

Citations

Detail

Sections
Recommended

/