Unique and hierarchically structured novel Co3O4/NiO nanosponges with superior photocatalytic activity against organic contaminants

Vahini RAJA, Senthil Kumar PUVANESWARAN, Karuthapandian SWAMINATHAN

PDF(509 KB)
PDF(509 KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (4) : 375-384. DOI: 10.1007/s11706-017-0399-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Unique and hierarchically structured novel Co3O4/NiO nanosponges with superior photocatalytic activity against organic contaminants

Author information +
History +

Abstract

In the present study, novel Co3O4/NiO nanosponges designed for the photocatalytic degradation of organic contaminants were synthesized by a simple precipitation technique. The formation of sponge-like nanostructures was clearly evident through the TEM analysis. The photocatalytic efficiency was tested against rhodamine B (RhB) and congo red (CR) dye solutions. Co3O4/NiO nanosponges showed excellent and enhanced photocatalytic efficacy compared to those of Co3O4, NiO nanoparticles, and standards like TiO2 and ZnO. The influence of paramount important operational parameters was explored and the conditions for the best photocatalytic efficiency were optimized. The trapping experiment revealed that the reactive oxygen species (ROS) identified was ·OH radical. These findings certainly open up a new way for synthesizing a morphology dependent photocatalyst.

Keywords

Co3O4/NiO / nanosponges / photocatalytic efficacy / visible light

Cite this article

Download citation ▾
Vahini RAJA, Senthil Kumar PUVANESWARAN, Karuthapandian SWAMINATHAN. Unique and hierarchically structured novel Co3O4/NiO nanosponges with superior photocatalytic activity against organic contaminants. Front. Mater. Sci., 2017, 11(4): 375‒384 https://doi.org/10.1007/s11706-017-0399-3

References

[1]
Tan G, Zhang  L, Ren H , . Effects of pH on the hierarchical structures and photocatalytic performance of BiVO4 powders prepared via the microwave hydrothermal method. ACS Applied Materials & Interfaces, 2013, 5(11): 5186–5193
CrossRef Pubmed Google scholar
[2]
Lei W, Portehault  D, Dimova R , . Boron carbon nitride nanostructures from salt melts: tunable water-soluble phosphors. Journal of the American Chemical Society, 2011, 133(18): 7121–7127
CrossRef Pubmed Google scholar
[3]
Richardson S D . Water analysis: emerging contaminants and current issues. Analytical Chemistry, 2009, 81(12): 4645–4677
CrossRef Pubmed Google scholar
[4]
Latha P, Dhanabackialakshmi  R, Kumar P S , . Synergistic effects of trouble free and 100% recoverable CeO2/Nylon nanocomposite thin film for the photocatalytic degradation of organic contaminants. Separation and Purification Technology, 2016, 168: 124–133
CrossRef Google scholar
[5]
Babu S G, Vinoth  R, Narayana P S , . Reduced graphene oxide wrapped Cu2O supported on C3N4: An efficient visible light responsive semiconductor photocatalyst. APL Materials, 2015, 3(10): 104415
CrossRef Google scholar
[6]
Nezamzadeh-Ejhieh A ,  Banan Z . Sunlight assisted photodecolori-zation of crystal violet catalyzed by CdS nanoparticles embedded on zeolite A. Desalination, 2012, 284: 157–166
CrossRef Google scholar
[7]
Bhatnagar A, Hogland  W, Marques M , . An overview of the modification methods of activated carbon for its water treatment applications.Chemical Engineering Journal, 2013, 219:499–511
CrossRef Google scholar
[8]
Khabashesku V N ,  Zimmerman J L ,  Margrave J L . Powder synthesis and characterization of amorphous carbon nitride. Chemistry of Materials, 2000, 12(11): 3264–3270
CrossRef Google scholar
[9]
Zhang X, Wu  F, Deng N . Efficient photodegradation of dyes using light-induced self assembly TiO2/β-cyclodextrin hybrid nanoparticles under visible light irradiation. Journal of Hazardous Materials, 2011, 185(1): 117–123
CrossRef Pubmed Google scholar
[10]
Fan H J, Lu  C S, Lee  W L W, . Mechanistic pathways differences between P25-TiO2 and Pt-TiO2 mediated CV photodegradation. Journal of Hazardous Materials, 2011, 185(1): 227–235
CrossRef Pubmed Google scholar
[11]
Ahmad R. Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP). Journal of Hazardous Materials, 2009, 171(1–3): 767–773
CrossRef Pubmed Google scholar
[12]
Fujishima A, Honda  K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38
CrossRef Pubmed Google scholar
[13]
Kamat P V. Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chemical Reviews, 1993, 93(1): 267–300
CrossRef Google scholar
[14]
Hu Y, Gao  X, Yu L , . Carbon-coated CdS petalous nanostructures with enhanced photostability and photocatalytic activity. Angewandte Chemie International Edition, 2013, 52(21): 5636–5639
CrossRef Pubmed Google scholar
[15]
Chen X, Shen  S, Guo L , . Semiconductor-based photocatalytic hydrogen generation. Chemical Reviews, 2010, 110(11): 6503–6570
CrossRef Pubmed Google scholar
[16]
Sasi B, Gopchandran  K G. Nanostructured mesoporous nickel oxide thin films. Nanotechnology, 2007, 18(11): 115613
CrossRef Google scholar
[17]
Bandara J, Yasomanee  J P. p-Type oxide semiconductors as hole collectors in dye-sensitized solid-state solar cells. Semiconductor Scienceand Technology, 2007, 22(2): 20–24 
CrossRef Google scholar
[18]
Shi J, Guo  L. ABO3-based photocatalysts for water splitting. Progress in Natural Science: Materials International, 2012, 22(6): 592–615
CrossRef Google scholar
[19]
Wan X, Yuan  M, Tie S L , . Effects of catalyst characters on the photocatalytic activity and process of NiO nanoparticles in the degradation of methylene blue. Applied Surface Science, 2013, 277: 40–46
CrossRef Google scholar
[20]
Fominykh K, Chernev  P, Zaharieva I , . Iron-doped nickel oxide nanocrystals as highly efficient electrocatalysts for alkaline water splitting. ACS Nano, 2015, 9(5): 5180–5188
CrossRef Pubmed Google scholar
[21]
Babu S G, Vinoth  R, Kumar D P , . Influence of electron storing, transferring and shuttling assets of reduced graphene oxide at the interfacial copper doped TiO2 p-n heterojunction for increased hydrogen production. Nanoscale, 2015, 7(17): 7849–7857
CrossRef Pubmed Google scholar
[22]
Rubio-Marcos F, Manzano  C V, Reinosa  J J, . Mechanism of Ni1−xZnxO formation by thermal treatments on NiO nanoparticles dispersed over ZnO. The Journal of Physical Chemistry C, 2011, 115(28): 13577–13583
CrossRef Google scholar
[23]
Singh S A, Vemparala  B, Madras G . Adsorption kinetics of dyes and their mixtures with Co3O4–ZrO2 composites. Journal of Environmental Chemical Engineering, 2015, 3(4): 2684–2696
CrossRef Google scholar
[24]
Wang G, Shen  X, Horvat J , . Hydrothermal synthesis and optical, magnetic, and supercapacitance properties of nanoporous cobalt oxide nanorods. The Journal of Physical Chemistry C, 2009, 113(11): 4357–4361
CrossRef Google scholar
[25]
Salavati-Niasari M ,  Mir N, Davar  F. Synthesis and characterization of Co3O4 nanorods by thermal decomposition of cobalt oxalate. Journal of Physics and Chemistry of Solids, 2009, 70(5): 847–852
CrossRef Google scholar
[26]
Prakash K, Kumar  P S, Saravanakumar  K, . Controllable synthesis of SnO2 photocatalyst with superior photocatalytic activity for the degradation of methylene blue dye solution. Journal of Experimental Nanoscience, 2016, 11(14): 1138–1155
CrossRef Google scholar
[27]
Narayan R V, Kanniah  V, Dhathathreyan A . Tuning size and catalytic activity of nano-clusters of cobalt oxide. Journal of Chemical Sciences, 2006, 118(2): 179–184
CrossRef Google scholar
[28]
Zhang Y, Liu  Y, Fu S , . Morphology-controlled synthesis of Co3O4 crystals by soft chemical method. Materials Chemistry and Physics, 2007, 104(1): 166–171
CrossRef Google scholar
[29]
Kumar P S, Karuthapandian  S, Umadevi M , . Light induced synthesis of Sr/CdSe nanocomposite for the highly synergistic photodegradation of methylene blue dye solution. Materials Focus, 2016, 5(2): 128–136
CrossRef Google scholar
[30]
Kumar P S, Selvakumar  M, Babu S G , . CdO nanospheres: Facile synthesis and bandgap modification for the superior photocatalytic activity. Materials Letters, 2015, 151: 45–48
CrossRef Google scholar
[31]
Kumar P S, Selvakumar  M, Babu S G , . CuO/ZnO nanorods: An affordable efficient p-n heterojunction and morphology dependent photocatalytic activity against organic contaminants. Journal of Alloys and Compounds, 2017, 701: 562–573
CrossRef Google scholar
[32]
Karthik P, Vinoth  R, Babu S G , . Synthesis of highly visible light active TiO2-2-naphthol surface complex and its application in photocatalytic chromium(VI) reduction. RSC Advances, 2015, 5(50): 39752–39759
CrossRef Google scholar
[33]
Kumar P S, Selvakumar  M, Bhagabati P , . CdO/ZnO nanohybrids: facile synthesis and morphologically enhanced photocatalytic performance. RSC Advances, 2014, 4(62): 32977–32986
CrossRef Google scholar
[34]
Karunakaran C, Senthilvelan  S, Karuthapandian S . Solar photooxidation of aniline on ZnO surfaces. Solar Energy Materials and Solar Cells, 2005, 89(4): 391–402
CrossRef Google scholar
[35]
Saravanakumar K, Kumar  P S, Kumar  J V, . Controlled synthesis of plate like structured MoO3 and visible light induced degradation of rhodamine B dye solution. Energy and Environment Focus, 2016, 5(1): 50–57
CrossRef Google scholar

Acknowledgements

We are grateful to thank the University Grant Commission, New Delhi, India for the benefit of Faculty Development Programme (FDP-TNMK033/003). We also express our gratitude to the College Managing Board, Principal and Head of the Department of Chemistry, VHNSN College and Virudhunagar for providing research facilities.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(509 KB)

Accesses

Citations

Detail

Sections
Recommended

/