Unique and hierarchically structured novel Co3O4/NiO nanosponges with superior photocatalytic activity against organic contaminants

Vahini RAJA , Senthil Kumar PUVANESWARAN , Karuthapandian SWAMINATHAN

Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (4) : 375 -384.

PDF (509KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (4) : 375 -384. DOI: 10.1007/s11706-017-0399-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Unique and hierarchically structured novel Co3O4/NiO nanosponges with superior photocatalytic activity against organic contaminants

Author information +
History +
PDF (509KB)

Abstract

In the present study, novel Co3O4/NiO nanosponges designed for the photocatalytic degradation of organic contaminants were synthesized by a simple precipitation technique. The formation of sponge-like nanostructures was clearly evident through the TEM analysis. The photocatalytic efficiency was tested against rhodamine B (RhB) and congo red (CR) dye solutions. Co3O4/NiO nanosponges showed excellent and enhanced photocatalytic efficacy compared to those of Co3O4, NiO nanoparticles, and standards like TiO2 and ZnO. The influence of paramount important operational parameters was explored and the conditions for the best photocatalytic efficiency were optimized. The trapping experiment revealed that the reactive oxygen species (ROS) identified was ·OH radical. These findings certainly open up a new way for synthesizing a morphology dependent photocatalyst.

Keywords

Co 3O 4/NiO / nanosponges / photocatalytic efficacy / visible light

Cite this article

Download citation ▾
Vahini RAJA, Senthil Kumar PUVANESWARAN, Karuthapandian SWAMINATHAN. Unique and hierarchically structured novel Co3O4/NiO nanosponges with superior photocatalytic activity against organic contaminants. Front. Mater. Sci., 2017, 11(4): 375-384 DOI:10.1007/s11706-017-0399-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tan GZhang  LRen H . Effects of pH on the hierarchical structures and photocatalytic performance of BiVO4 powders prepared via the microwave hydrothermal method. ACS Applied Materials & Interfaces20135(11): 5186–5193

[2]

Lei WPortehault  DDimova R . Boron carbon nitride nanostructures from salt melts: tunable water-soluble phosphors. Journal of the American Chemical Society2011133(18): 7121–7127

[3]

Richardson S D . Water analysis: emerging contaminants and current issues. Analytical Chemistry200981(12): 4645–4677

[4]

Latha PDhanabackialakshmi  RKumar P S . Synergistic effects of trouble free and 100% recoverable CeO2/Nylon nanocomposite thin film for the photocatalytic degradation of organic contaminants. Separation and Purification Technology2016168: 124–133

[5]

Babu S GVinoth  RNarayana P S . Reduced graphene oxide wrapped Cu2O supported on C3N4: An efficient visible light responsive semiconductor photocatalyst. APL Materials20153(10): 104415

[6]

Nezamzadeh-Ejhieh A Banan Z . Sunlight assisted photodecolori-zation of crystal violet catalyzed by CdS nanoparticles embedded on zeolite A. Desalination2012284: 157–166

[7]

Bhatnagar AHogland  WMarques M . An overview of the modification methods of activated carbon for its water treatment applications.Chemical Engineering Journal2013219:499–511

[8]

Khabashesku V N Zimmerman J L Margrave J L . Powder synthesis and characterization of amorphous carbon nitride. Chemistry of Materials200012(11): 3264–3270

[9]

Zhang XWu  FDeng N . Efficient photodegradation of dyes using light-induced self assembly TiO2/β-cyclodextrin hybrid nanoparticles under visible light irradiation. Journal of Hazardous Materials2011185(1): 117–123

[10]

Fan H JLu  C SLee  W L W. Mechanistic pathways differences between P25-TiO2 and Pt-TiO2 mediated CV photodegradation. Journal of Hazardous Materials2011185(1): 227–235

[11]

Ahmad R. Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP). Journal of Hazardous Materials2009171(1–3): 767–773

[12]

Fujishima AHonda  K. Electrochemical photolysis of water at a semiconductor electrode. Nature1972238(5358): 37–38

[13]

Kamat P V. Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chemical Reviews199393(1): 267–300

[14]

Hu YGao  XYu L . Carbon-coated CdS petalous nanostructures with enhanced photostability and photocatalytic activity. Angewandte Chemie International Edition201352(21): 5636–5639

[15]

Chen XShen  SGuo L . Semiconductor-based photocatalytic hydrogen generation. Chemical Reviews2010110(11): 6503–6570

[16]

Sasi BGopchandran  K G. Nanostructured mesoporous nickel oxide thin films. Nanotechnology200718(11): 115613

[17]

Bandara JYasomanee  J P. p-Type oxide semiconductors as hole collectors in dye-sensitized solid-state solar cells. Semiconductor Scienceand Technology200722(2): 20–24 

[18]

Shi JGuo  L. ABO3-based photocatalysts for water splitting. Progress in Natural Science: Materials International201222(6): 592–615

[19]

Wan XYuan  MTie S L . Effects of catalyst characters on the photocatalytic activity and process of NiO nanoparticles in the degradation of methylene blue. Applied Surface Science2013277: 40–46

[20]

Fominykh KChernev  PZaharieva I . Iron-doped nickel oxide nanocrystals as highly efficient electrocatalysts for alkaline water splitting. ACS Nano20159(5): 5180–5188

[21]

Babu S GVinoth  RKumar D P . Influence of electron storing, transferring and shuttling assets of reduced graphene oxide at the interfacial copper doped TiO2 p-n heterojunction for increased hydrogen production. Nanoscale20157(17): 7849–7857

[22]

Rubio-Marcos FManzano  C VReinosa  J J. Mechanism of Ni1−xZnxO formation by thermal treatments on NiO nanoparticles dispersed over ZnO. The Journal of Physical Chemistry C2011115(28): 13577–13583

[23]

Singh S AVemparala  BMadras G . Adsorption kinetics of dyes and their mixtures with Co3O4–ZrO2 composites. Journal of Environmental Chemical Engineering20153(4): 2684–2696

[24]

Wang GShen  XHorvat J . Hydrothermal synthesis and optical, magnetic, and supercapacitance properties of nanoporous cobalt oxide nanorods. The Journal of Physical Chemistry C2009113(11): 4357–4361

[25]

Salavati-Niasari M Mir NDavar  F. Synthesis and characterization of Co3O4 nanorods by thermal decomposition of cobalt oxalate. Journal of Physics and Chemistry of Solids200970(5): 847–852

[26]

Prakash KKumar  P SSaravanakumar  K. Controllable synthesis of SnO2 photocatalyst with superior photocatalytic activity for the degradation of methylene blue dye solution. Journal of Experimental Nanoscience201611(14): 1138–1155

[27]

Narayan R VKanniah  VDhathathreyan A . Tuning size and catalytic activity of nano-clusters of cobalt oxide. Journal of Chemical Sciences2006118(2): 179–184

[28]

Zhang YLiu  YFu S . Morphology-controlled synthesis of Co3O4 crystals by soft chemical method. Materials Chemistry and Physics2007104(1): 166–171

[29]

Kumar P SKaruthapandian  SUmadevi M . Light induced synthesis of Sr/CdSe nanocomposite for the highly synergistic photodegradation of methylene blue dye solution. Materials Focus20165(2): 128–136

[30]

Kumar P SSelvakumar  MBabu S G . CdO nanospheres: Facile synthesis and bandgap modification for the superior photocatalytic activity. Materials Letters2015151: 45–48

[31]

Kumar P SSelvakumar  MBabu S G . CuO/ZnO nanorods: An affordable efficient p-n heterojunction and morphology dependent photocatalytic activity against organic contaminants. Journal of Alloys and Compounds2017701: 562–573

[32]

Karthik PVinoth  RBabu S G . Synthesis of highly visible light active TiO2-2-naphthol surface complex and its application in photocatalytic chromium(VI) reduction. RSC Advances20155(50): 39752–39759

[33]

Kumar P SSelvakumar  MBhagabati P . CdO/ZnO nanohybrids: facile synthesis and morphologically enhanced photocatalytic performance. RSC Advances20144(62): 32977–32986

[34]

Karunakaran CSenthilvelan  SKaruthapandian S . Solar photooxidation of aniline on ZnO surfaces. Solar Energy Materials and Solar Cells200589(4): 391–402

[35]

Saravanakumar KKumar  P SKumar  J V. Controlled synthesis of plate like structured MoO3 and visible light induced degradation of rhodamine B dye solution. Energy and Environment Focus20165(1): 50–57

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (509KB)

1070

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/