Photocatalytic mechanism of high-activity anatase TiO2 with exposed (001) facets from molecular-atomic scale: HRTEM and Raman studies

Jun WU , Chentian SHI , Yupeng ZHANG , Qiang FU , Chunxu PAN

Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (4) : 358 -365.

PDF (324KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (4) : 358 -365. DOI: 10.1007/s11706-017-0398-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Photocatalytic mechanism of high-activity anatase TiO2 with exposed (001) facets from molecular-atomic scale: HRTEM and Raman studies

Author information +
History +
PDF (324KB)

Abstract

Anatase TiO2 with a variant percentage of exposed (001) facets was prepared under hydrothermal processes by adjusting the volume of HF, and the photocatalytic mechanism was studied from atomic-molecular scale by HRTEM and Raman spectroscopy. It was revealed that: 1) From HRTEM observations, the surface of original TiO2 with exposed (001) facets was clean without impurity, and the crystal lattice was clear and completed; however, when mixed with methylene blue (MB) solution, there were many 1 nm molecular absorbed at the surface of TiO2; after the photocatalytic experiment, MB molecules disappeared and the TiO2 lattice image became fuzzy. 2) The broken path of the MB chemical bond was obtained by Raman spectroscopy, i.e., after the irradiation of the light, the vibrational mode of C−N−C disappeared due to the chemical bond breakage, and the groups containing C−N bond and carbon rings were gradually decomposed. Accordingly, we propose that the driving force for breaking the chemical bond and the disappearance of groups is from the surface lattice distortion of TiO2 during photocatalyzation.

Keywords

TiO 2 / exposed (001) facets / HRTEM / Raman spectroscopy / photocatalytic degradation mechanism

Cite this article

Download citation ▾
Jun WU, Chentian SHI, Yupeng ZHANG, Qiang FU, Chunxu PAN. Photocatalytic mechanism of high-activity anatase TiO2 with exposed (001) facets from molecular-atomic scale: HRTEM and Raman studies. Front. Mater. Sci., 2017, 11(4): 358-365 DOI:10.1007/s11706-017-0398-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fujishima AHonda  K. Electrochemical photolysis of water at a semiconductor electrode. Nature1972238(5358): 37–38

[2]

Nishiyama NFujiwara  YAdachi K . Preparation of porous metal-ion-doped titanium dioxide and the photocatalytic degradation of 4-chlorophenol under visible light irradiation. Applied Catalysis B: Environmental2015176177: 347–353

[3]

Obata KKishishita  KOkemoto A . Photocatalytic decomposition of NH3 over TiO2 catalysts doped with Fe. Applied Catalysis B: Environmental2014160161: 200–203

[4]

Choi JPark  HHoffmann M R . Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. The Journal of Physical Chemistry C2010114(2): 783–792

[5]

Qi DXing  MZhang J . Hydrophobic carbon-doped TiO2/MCF-F composite as a high performance photocatalyst. The Journal of Physical Chemistry C2014118(14): 7329–7336

[6]

Chen XLou  YSamia A C S . Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: Comparison to a commercial nanopowder. Advanced Functional Materials200515(1): 41–49

[7]

Li DJiang  XZhang Y . A novel route to ZnO/TiO2 heterojunction composite fibers. Journal of Materials Research201328(3): 507–512

[8]

Luo CLi  DWu W . Preparation of porous micro–nano-structure NiO/ZnO heterojunction and its photocatalytic property. RSC Advances20144(6): 3090–3095

[9]

Luo CLi  DWu W . Preparation of 3D reticulated ZnO/CNF/NiO heteroarchitecture for high-performance photocatalysis. Applied Catalysis B: Environmental2015166167: 217–223

[10]

Lu QLu  ZLu Y . Photocatalytic synthesis and photovoltaic application of Ag–TiO2 nanorod composites. Nano Letters201313(11): 5698–5702

[11]

Wu JLuo  CLi D . Preparation of Au nanoparticle-decorated ZnO/NiO heterostructure via nonsolvent method for high-performance photocatalysis. Journal of Materials Science201752(3): 1285–1295

[12]

Pan XXu  Y J. Defect-mediated growth of noble-metal (Ag, Pt, and Pd) nanoparticles on TiO2 with oxygen vacancies for photocatalytic redox reactions under visible light. The Journal of Physical Chemistry C2013117(35): 17996–18005

[13]

Yarahmadi ASharifnia  S. Dye photosensitization of ZnO with metallophthalocyanines (Co, Ni and Cu) in photocatalytic conversion of greenhouse gases. Dyes and Pigments2014107(13): 140–145

[14]

He YTilocca  ADulub O . Local ordering and electronic signatures of submonolayer water on anatase TiO2(101). Nature Materials20098(7): 585–589

[15]

Bikondoa OPang  C LIthnin  R. Direct visualization of defect-mediated dissociation of water on TiO2 (110). Nature Materials20065(3): 189–192

[16]

Du YDeskins  N AZhang  Z. Two pathways for water interaction with oxygen adatoms on TiO2(110). Physical Review Letters2009102(9): 096102

[17]

Ekström G N McQuillan A J In situ infrared spectroscopy of glyoxylic acid adsorption and photocatalysis on TiO2 in aqueous solution. The Journal of Physical Chemistry B1999103(48): 10562–10565

[18]

El-Maazawi MFinken  A NNair  A B. Adsorption and photocatalytic oxidation of acetone on TiO2: An in situ transmission FT-IR study. Journal of Catalysis2000191(1): 138–146

[19]

Sato SUeda  KKawasaki Y In situ IR observation of surface species during the photocatalytic decomposition of acetic acid over TiO2 films. The Journal of Physical Chemistry B2002106(35): 9054–9058

[20]

Kang MLee  J HLee  S H. Preparation of TiO2 film by the MOCVD method and analysis for decomposition of trichloro-ethylene using in situ FT-IR spectroscopy. Journal of Molecular Catalysis A: Chemical2003193(1–2): 273–283

[21]

Yu ZChuang  SIn situ IR study of adsorbed species and photogenerated electrons during photocatalytic oxidation of ethanol on TiO2. Journal of Catalysis2007246(1): 118–126

[22]

Almeida A RMoulijn  J AMul  GIn situ ATR-FTIR study on the selective photo-oxidation of cyclohexane over anatase TiO2. The Journal of Physical Chemistry C2008112(5): 1552–1561

[23]

Ho CShieh  CTseng C . Decomposition pathways of glycolic acid on titanium dioxide. Journal of Catalysis2009261(2): 150–157

[24]

Tseng C LChen  Y KWang  S H. 2-Ethanolamine on TiO2 investigated by in situ infrared spectroscopy. Adsorption, photochemistry, and its interaction with CO2. The Journal of Physical Chemistry C2010114(27): 11835–11843

[25]

Imanishi AOkamura  TOhashi N . Mechanism of water photooxidation reaction at atomically flat TiO2 (rutile) (110) and (100) surfaces: dependence on solution pH. Journal of the American Chemical Society2007129(37): 11569–11578

[26]

Fleming G JIdriss  H. Probing the reaction pathways of DL-proline on TiO2 (001) single crystal surfaces. Langmuir200420(18): 7540–7546

[27]

Cao YYi  LHuang L . Mechanism and pathways of chlorfenapyr photocatalytic degradation in aqueous suspension of TiO2. Environmental Science & Technology200640(10): 3373–3377

[28]

Zhang JZhang  YLei Y . Photocatalytic and degradation mechanisms of anatase TiO2: A HRTEM study. Catalysis Science & Technology20111(2): 273–278

[29]

Tian FZhang  YZhang J . Raman spectroscopy: A new approach to measure the percentage of anatase TiO2 exposed (001) facets. The Journal of Physical Chemistry C2012116(13): 7515–7519

[30]

Yang H GSun  C HQiao  S Z. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature2008453(7195): 638–641

[31]

Liu PWang  YZhang H . Vapor-phase hydrothermal transformation of HTiOF3 intermediates into {001} faceted anatase single-crystalline nanosheets. Small20128(23): 3664–3673

[32]

Bersani DLottici  P PDing  X Z. Phonon confinement effects in the Raman scattering by TiO2 nanocrystals. Applied Physics Letters199872(1): 73–75

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (324KB)

894

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/