Microwave synthesis of chain-like zircona nanofibers through carbon-induced self-assembly growth

Wanyu ZHAO, Jian LI, Bingbing FAN, Gang SHAO, Hailong WANG, Bozhen SONG, Shengnan WEI, Rui ZHANG

PDF(210 KB)
PDF(210 KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (4) : 353-357. DOI: 10.1007/s11706-017-0397-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Microwave synthesis of chain-like zircona nanofibers through carbon-induced self-assembly growth

Author information +
History +

Abstract

Chain-like zircona (ZrO2) nanofibers were prepared by microwave sintering without any surfactants or solid templates. Microwave sintering was conducted in a multimode microwave cavity with TE666 resonant mode at 2.45 GHz. Carbon particles were used to activate unique thermal processes when mixed with ZrO2 precursor. The sintering condition was at 1300°C for 10 min. Samples were characterized by XRD, SEM, TEM techniques. It was found that both monolithic and tetragonal ZrO2 co-existed in samples prepared from the mixture of ZrO2 precursors and carbon by either microwave or conventional sintering. Only m-ZrO2 exists in samples prepared by ZrO2 precursors without carbon. ZrO2 appeared as chain-like nanofibers, which might be attributed to a so-called carbon-induced self-assembly growth mechanism.

Keywords

ZrO2 / chain-like nanofibers / microwave sintering / carbon-induced / self-assembly growth

Cite this article

Download citation ▾
Wanyu ZHAO, Jian LI, Bingbing FAN, Gang SHAO, Hailong WANG, Bozhen SONG, Shengnan WEI, Rui ZHANG. Microwave synthesis of chain-like zircona nanofibers through carbon-induced self-assembly growth. Front. Mater. Sci., 2017, 11(4): 353‒357 https://doi.org/10.1007/s11706-017-0397-5

References

[1]
Mamak M, Coombs  N, Ozin G A . Electroactive mesoporous yttria stabilized zirconia containing platinum or nickel oxide nanoclusters: a new class of solid oxide fuel cell electrode materials. Advanced Functional Materials, 2001, 11(1): 59–63
CrossRef Google scholar
[2]
Bartolomeo E D ,  Grilli M L ,  Yoon J W , . Zirconia-based electrochemical NOx sensors with semiconducting oxide electrodes. Journal of the American Ceramic Society, 2004, 87(10): 1883–1889
CrossRef Google scholar
[3]
Gole J L, Prokes  S M, Stout  J D, . Unique properties of selectively formed zirconia nanostructures. Advanced Materials, 2006, 18(5): 664–667
CrossRef Google scholar
[4]
Ghosh S, Teweldebrhan  D, Morales J R , . Thermal properties of the optically transparent pore-free nanostructured yttria-stabilized zirconia. Journal of Applied Physics, 2009, 106(11): 113507
CrossRef Google scholar
[5]
Shu Z, Jiao  X, Chen D . Synthesis and photocatalytic properties of flower-like zirconia nanostructures. CrystEngComm, 2012, 14(3): 1122–1127 
CrossRef Google scholar
[6]
Oliveira A P, Torem  M L. The influence of precipitation variables on zirconia powder synthesis. Powder Technology, 2001, 119(2–3): 181–193
CrossRef Google scholar
[7]
Bondioli F, Ferrari  A M, Leonelli  C, . Microwave-hydrothermal synthesis of nanocrystalline zirconia powders. Journal of the American Ceramic Society, 2001, 84(11): 2728–2730
CrossRef Google scholar
[8]
Kuo C W, Lee  Y H, Hung  I M, . Crystallization kinetics and growth mechanism of 8 mol% yttria-stabilized zirconia (8YSZ) nano-powders prepared by a sol–gel process. Journal of Alloys and Compounds, 2008, 453(1–2): 470–475
CrossRef Google scholar
[9]
Duran C, Sato  K, Hotta Y , . Ball milling assisted hydrothermal synthesis of ZrO2 nanopowders. Ceramics International, 2015, 41(4): 5588–5593
CrossRef Google scholar
[10]
Cao H Q, Qiu  X Q, Luo  B, . Synthesis and room-temperature ultraviolet photoluminescence properties of zirconia nanowires. Advanced Functional Materials, 2004, 14(3): 243–246
CrossRef Google scholar
[11]
Liu Y, Zheng  C, Wang W , . Synthesis and characterization of zirconia nanorods. Journal of the American Ceramic Society, 2002, 85(12): 3120–3122
CrossRef Google scholar
[12]
Jiang C, Wang  F, Wu N , . Up- and down-conversion cubic zirconia and hafnia nanobelts. Advanced Materials, 2008, 20(24): 4826–4829
CrossRef Google scholar
[13]
Fang D, Huang  K, Luo Z , . Freestanding ZrO2 nanotube membranes made by anodic oxidation and effect of heat treatment on their morphology and crystalline structure. Journal of Materials Chemistry, 2011, 21(13): 4989–4994
CrossRef Google scholar
[14]
Birnboim A, Calame  J P, Carmel  Y. Microfocusing and polarization effects in spherical neck ceramic microstructures during microwave processing. Journal of Applied Physics, 1999, 85(1): 478–482
CrossRef Google scholar
[15]
Zhang H B, Edirisinghe  M J. Electrospinning zirconia fiber from a suspension. Journal of the American Ceramic Society, 2006, 89(6): 1870–1875
CrossRef Google scholar
[16]
Tok A I Y ,  Boey F Y C ,  Du S W , . Flame spray synthesis of ZrO2 nano-particles using liquid precursors. Materials Science and Engineering B, 2006, 130(1–3): 114–119
CrossRef Google scholar
[17]
Wang J A, Valenzuela  M A, Salmones  J, . Comparative study of nanocrystalline zirconia prepared by precipitation and sol–gel methods. Catalysis Today, 2001, 68(1–3): 21–30
CrossRef Google scholar
[18]
Srdić V V ,  Winterer M . Comparison of nanosized zirconia synthesized by gas and liquid phase methods. Journal of the European Ceramic Society, 2006, 26(15): 3145–3151
CrossRef Google scholar
[19]
Pian X, Fan  B, Chen H , . Preparation of m-ZrO2 compacts by microwave sintering. Ceramics International, 2014, 40(7): 10483–10488
CrossRef Google scholar
[20]
Oghbaei M, Mirzaee  O. Microwave versus conventional sintering: A review of fundamentals, advantages and applications. Journal of Alloys and Compounds, 2010, 494(1–2): 175–189
CrossRef Google scholar
[21]
Rybakov K I, Semenov  V E, Link  G, . Preferred orientation of pores in ceramics under heating by a linearly polarized microwave field. Journal of Applied Physics, 2007, 101(8): 084915
CrossRef Google scholar
[22]
Chandrasekaran S, Basak  T, Srinivasan R . Microwave heating characteristics of graphite based powder mixtures. International Communications in Heat and Mass Transfer, 2013, 48: 22–27
CrossRef Google scholar
[23]
Menéndez J A ,  Juárez-Pérez E J ,  Ruisánchez E , . Ball lightning plasma and plasma arc formation during the microwave heating of carbons. Carbon, 2011, 49(1): 346–349
CrossRef Google scholar
[24]
Menéndez J A ,  Arenillas A ,  Fidalgo B , . Microwave heating processes involving carbon materials. Fuel Processing Technolo-gy, 2010, 91(1): 1–8
CrossRef Google scholar

Acknowledgements

The authors appreciate the financial support from the National Natural Science Foundation of China (Grant Nos. 51672254, 51602287 and 51402264) and the China Postdoctoral Science Foundation (Grant No. 2016M602266).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(210 KB)

Accesses

Citations

Detail

Sections
Recommended

/