Microwave synthesis of chain-like zircona nanofibers through carbon-induced self-assembly growth

Wanyu ZHAO , Jian LI , Bingbing FAN , Gang SHAO , Hailong WANG , Bozhen SONG , Shengnan WEI , Rui ZHANG

Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (4) : 353 -357.

PDF (210KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (4) : 353 -357. DOI: 10.1007/s11706-017-0397-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Microwave synthesis of chain-like zircona nanofibers through carbon-induced self-assembly growth

Author information +
History +
PDF (210KB)

Abstract

Chain-like zircona (ZrO2) nanofibers were prepared by microwave sintering without any surfactants or solid templates. Microwave sintering was conducted in a multimode microwave cavity with TE666 resonant mode at 2.45 GHz. Carbon particles were used to activate unique thermal processes when mixed with ZrO2 precursor. The sintering condition was at 1300°C for 10 min. Samples were characterized by XRD, SEM, TEM techniques. It was found that both monolithic and tetragonal ZrO2 co-existed in samples prepared from the mixture of ZrO2 precursors and carbon by either microwave or conventional sintering. Only m-ZrO2 exists in samples prepared by ZrO2 precursors without carbon. ZrO2 appeared as chain-like nanofibers, which might be attributed to a so-called carbon-induced self-assembly growth mechanism.

Keywords

ZrO 2 / chain-like nanofibers / microwave sintering / carbon-induced / self-assembly growth

Cite this article

Download citation ▾
Wanyu ZHAO, Jian LI, Bingbing FAN, Gang SHAO, Hailong WANG, Bozhen SONG, Shengnan WEI, Rui ZHANG. Microwave synthesis of chain-like zircona nanofibers through carbon-induced self-assembly growth. Front. Mater. Sci., 2017, 11(4): 353-357 DOI:10.1007/s11706-017-0397-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mamak MCoombs  NOzin G A . Electroactive mesoporous yttria stabilized zirconia containing platinum or nickel oxide nanoclusters: a new class of solid oxide fuel cell electrode materials. Advanced Functional Materials200111(1): 59–63

[2]

Bartolomeo E D Grilli M L Yoon J W . Zirconia-based electrochemical NOx sensors with semiconducting oxide electrodes. Journal of the American Ceramic Society200487(10): 1883–1889

[3]

Gole J LProkes  S MStout  J D. Unique properties of selectively formed zirconia nanostructures. Advanced Materials200618(5): 664–667

[4]

Ghosh STeweldebrhan  DMorales J R . Thermal properties of the optically transparent pore-free nanostructured yttria-stabilized zirconia. Journal of Applied Physics2009106(11): 113507

[5]

Shu ZJiao  XChen D . Synthesis and photocatalytic properties of flower-like zirconia nanostructures. CrystEngComm201214(3): 1122–1127 

[6]

Oliveira A PTorem  M L. The influence of precipitation variables on zirconia powder synthesis. Powder Technology2001119(2–3): 181–193

[7]

Bondioli FFerrari  A MLeonelli  C. Microwave-hydrothermal synthesis of nanocrystalline zirconia powders. Journal of the American Ceramic Society200184(11): 2728–2730

[8]

Kuo C WLee  Y HHung  I M. Crystallization kinetics and growth mechanism of 8 mol% yttria-stabilized zirconia (8YSZ) nano-powders prepared by a sol–gel process. Journal of Alloys and Compounds2008453(1–2): 470–475

[9]

Duran CSato  KHotta Y . Ball milling assisted hydrothermal synthesis of ZrO2 nanopowders. Ceramics International201541(4): 5588–5593

[10]

Cao H QQiu  X QLuo  B. Synthesis and room-temperature ultraviolet photoluminescence properties of zirconia nanowires. Advanced Functional Materials200414(3): 243–246

[11]

Liu YZheng  CWang W . Synthesis and characterization of zirconia nanorods. Journal of the American Ceramic Society200285(12): 3120–3122

[12]

Jiang CWang  FWu N . Up- and down-conversion cubic zirconia and hafnia nanobelts. Advanced Materials200820(24): 4826–4829

[13]

Fang DHuang  KLuo Z . Freestanding ZrO2 nanotube membranes made by anodic oxidation and effect of heat treatment on their morphology and crystalline structure. Journal of Materials Chemistry201121(13): 4989–4994

[14]

Birnboim ACalame  J PCarmel  Y. Microfocusing and polarization effects in spherical neck ceramic microstructures during microwave processing. Journal of Applied Physics199985(1): 478–482

[15]

Zhang H BEdirisinghe  M J. Electrospinning zirconia fiber from a suspension. Journal of the American Ceramic Society200689(6): 1870–1875

[16]

Tok A I Y Boey F Y C Du S W . Flame spray synthesis of ZrO2 nano-particles using liquid precursors. Materials Science and Engineering B2006130(1–3): 114–119

[17]

Wang J AValenzuela  M ASalmones  J. Comparative study of nanocrystalline zirconia prepared by precipitation and sol–gel methods. Catalysis Today200168(1–3): 21–30

[18]

Srdić V V Winterer M . Comparison of nanosized zirconia synthesized by gas and liquid phase methods. Journal of the European Ceramic Society200626(15): 3145–3151

[19]

Pian XFan  BChen H . Preparation of m-ZrO2 compacts by microwave sintering. Ceramics International201440(7): 10483–10488

[20]

Oghbaei MMirzaee  O. Microwave versus conventional sintering: A review of fundamentals, advantages and applications. Journal of Alloys and Compounds2010494(1–2): 175–189

[21]

Rybakov K ISemenov  V ELink  G. Preferred orientation of pores in ceramics under heating by a linearly polarized microwave field. Journal of Applied Physics2007101(8): 084915

[22]

Chandrasekaran SBasak  TSrinivasan R . Microwave heating characteristics of graphite based powder mixtures. International Communications in Heat and Mass Transfer201348: 22–27

[23]

Menéndez J A Juárez-Pérez E J Ruisánchez E . Ball lightning plasma and plasma arc formation during the microwave heating of carbons. Carbon201149(1): 346–349

[24]

Menéndez J A Arenillas A Fidalgo B . Microwave heating processes involving carbon materials. Fuel Processing Technolo-gy201091(1): 1–8

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (210KB)

749

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/