Electrochemical capacitance of nanostructured ruthenium-doped tin oxide Sn1--xRuxO2 by the microemulsion method

Ramanathan SARASWATHY

Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (4) : 385 -394.

PDF (483KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (4) : 385 -394. DOI: 10.1007/s11706-017-0396-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Electrochemical capacitance of nanostructured ruthenium-doped tin oxide Sn1--xRuxO2 by the microemulsion method

Author information +
History +
PDF (483KB)

Abstract

Synthesis of nanostructured Ru-doped SnO2 was successfully carried out using the reverse microemulsion method. The phase purity and the crystallite size were analyzed by XRD. The surface morphology and the microstructure of synthesized nanoparticles were analyzed by SEM and TEM. The vibration mode of nanoparticles was investigated using FTIR and Raman studies. The electrochemical behavior of the Ru-doped SnO2 electrode was evaluated in a 0.1 mol/L Na2SO4 solution using cyclic voltammetry. The 5% Ru-doped SnO2 electrode exhibited a high specific capacitance of 535.6 F/g at a scan rate 20 mV/s, possessing good conductivity as well as the electro-cycling stability. The Ru-doped SnO2 composite shows excellent electrochemical properties, suggesting that this composite is a promising material for supercapacitors.

Keywords

reverse microemulsion / tin oxide / nanomaterials / supercapacitor / electrochemical property

Cite this article

Download citation ▾
Ramanathan SARASWATHY. Electrochemical capacitance of nanostructured ruthenium-doped tin oxide Sn1--xRuxO2 by the microemulsion method. Front. Mater. Sci., 2017, 11(4): 385-394 DOI:10.1007/s11706-017-0396-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Burke A. Ultracapacitors: Why, how, and where is the technology. Journal of Power Sources200091(1): 37–50 

[2]

Hu C CChang K HLin M CDesign and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Letters20066(12): 2690–2695 

[3]

Kim JZhu KYan YMicrostructure and pseudocapacitive properties of electrodes constructed of oriented NiO-TiO2 nanotube arrays. Nano Letters201010(10): 4099–4104 

[4]

Li GWang ZZheng F LZnO@MoO3 core/shell nanocables: Facile electrochemical synthesis and enhanced supercapacitor performances. Journal of Materials Chemistry201121(12): 4217–4221 

[5]

Chen JXia XTu JCo3O4‒C core‒shell nanowire array as an advanced anode material for lithium ion batteries. Journal of Materials Chemistry201222(30): 15056–15061 

[6]

Jeong Y UManthiram A. Nanocrystalline manganese oxides for electrochemical capacitors with neutral electrolytes. Journal of the Electrochemical Society2002149(11): A1419–A1422 

[7]

Wang HRogach A L. Hierarchical SnO2 nanostructures: Recent advances in design, synthesis, and applications. Chemistry of Materials201426(1): 123–133 

[8]

Han XJin MXie SSynthesis of tin dioxide octahedral nanoparticles with exposed high-energy {221} facets and enhanced gas-sensing properties. Angewandte Chemie International Edition200948(48): 9180–9183

[9]

El Moustafid TCachet HTribollet BModified transparent SnO2 electrodes as efficient and stable cathodes for oxygen reduction. Electrochimica Acta200247(8): 1209–1215 

[10]

Dai Y MTang S CPeng J QMnO2@SnO2 core‒shell heterostructured nanorods for supercapacitors. Materials Letters2014130: 107–110 

[11]

Manivel PRamakrishnan SKothurkar N KOptical and electrochemical studies of polyaniline/SnO2 fibrous nanocomposites. Materials Research Bulletin201348(2): 640–645 

[12]

He CXiao YDong HMosaic-structured SnO2@C porous microspheres for high-performance supercapacitor electrode materials. Electrochimica Acta2014142: 157–166 

[13]

Egdell R GGoodenough J BHamnett AElectrochemistry of ruthenates Part 1. — Oxygen reduction on pyrochlore ruthenates. Journal of the Chemical Society, Faraday Transactions198379: 893–912 

[14]

Horowitz H SLongo J MHorowitz H H The synthesis and electrocatalytic properties of nonstoichiometric ruthenate pyrochlores. In: Grasselli R K, Brazdil J F, eds. ACS Symposium Series (Volume 279): Solid State Chemistry in Catalysis. Washington, DC: ACS1985, 143–163

[15]

Lim J HChoi D JKim H KThin film supercapacitors using a sputtered RuO2 electrode. Journal of the Electrochemical Society2001148(3): A275–A278 

[16]

Raghuveer VKumar KViswanathan B. Nanocrystalline lead ruthenium pyrochlore as oxygen reduction electrode. Indian Journal of Engineering and Materials Sciences20029(2): 137–140

[17]

Ramamurthy PSecco E A. Studies on metal hydroxy compounds. XIII. Thermal analyses and decomposition kinetics of hydroxystannates of bivalent metals. Canadian Journal of Chemistry197149(17): 2813–2816 

[18]

Venugopal BNandan BAyyachamy AInfluence of manganese ions in the band gap of tin oxide nanoparticles: structure, microstructure and optical studies. RSC Advances20144(12): 6141–6150 

[19]

Tian Z MYuan S LHe J HStructure and magnetic properties in Mn doped SnO2 nanoparticles synthesized by chemical co-precipitation method. Journal of Alloys and Compounds2008466(1‒2): 26–30 

[20]

Kalantar-zadeh KOu J ZDaeneke TTwo dimensional and layered transition metal oxides. Applied Materials Today20165: 73–89 

[21]

Nandan BVenugopal BAmirthapandian SEffect of Pd ion doping in the band gap of SnO2 nanoparticles: structural and optical studies. Journal of Nanoparticle Research19992013(15): 1–11

[22]

Gu FWang S FSong C FSynthesis and luminescence properties of SnO2 nanoparticles. Chemical Physics Letters2003372(3‒4): 451–454 

[23]

Das SKar SChaudhuri S. Optical properties of SnO2 nanoparticles and nanorods synthesized by solvothermal process. Journal of Applied Physics200699(11): 114303 

[24]

Katiyar R SDawson PHargreave M MDynamics of the rutile structure. III. Lattice dynamics, infrared and Raman spectra of SnO2Journal of Physics Part C: Solid State Physics19714(15): 2421–2431

[25]

Chen WGhosh DChen S. Large-scale electrochemical synthesis of SnO2 nanoparticles. Journal of Materials Science200843(15): 5291–5299 

[26]

Xiong C SXiong Y HZhu HInvestigation of Raman spectrum for nano-SnO2Science in China Series A: Mathematics Physics Astronomy199740(11): 1222–1227

[27]

Chen Z WDu JZhang H JExploring the microstructural and electrical properties of SnO2 nanorods prepared by a widely applicable route. Acta Materialia200957(15): 4632–4637 

[28]

Chen Y JNie LXue X YLinear ethanol sensing of SnO2 nanorods with extremely high sensitivity. Applied Physics Letters200688(8): 083105 

[29]

Camacho-López M AGaleana-Camacho J REsparza-García ACharacterization of nanostructured SnO2 films deposited by reactive DC-magnetron sputtering. Superficies y Vacío201326(3): 95–99

[30]

Trani FCausà MNinno DDensity functional study of oxygen vacancies at the SnO2 surface and subsurface sites. Physical Review B: Condensed Matter and Materials Physics200877(24): 245410 

[31]

Zhu ZDeka R CChutia AEnhanced gas-sensing behaviour of Ru-doped SnO2 surface: A periodic density functional approach. Journal of Physics and Chemistry of Solids200970(9): 1248–1255 

[32]

McGuire KPan Z WWang Z LRaman studies of semiconducting oxide nanobelts. Journal of Nanoscience and Nanotechnology20022(5): 499–502 

[33]

Wu QXu YYao ZSupercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano20104(4): 1963–1970 doi:10.1021/nn1000035

[34]

Manivel PRamakrishnan SKothurkar N KOptical and electrochemical studies of polyaniline/SnO2 fibrous nanocomposites. Materials Research Bulletin201348(2): 640–645 

[35]

Dai Y MTang S CPeng J QMnO2@SnO2 core–shell heterostructured nanorods for supercapacitors. Materials Letters2014130: 107–110 

[36]

Li GWang ZZheng FZnO@MoO3 core/shell nanocables: facile electrochemical synthesis and enhanced supercapacitor performances. Journal of Materials Chemistry201121(12): 4217–4221

[37]

Saha SJana MKhanra PBand gap modified boron doped NiO/Fe3O4 nanostructure as the positive electrode for high energy asymmetric supercapacitors. RSC Advances20166(2): 1380–1387 

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (483KB)

986

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/