Spectroscopic investigation confirms retaining the pristine nature of single-walled carbon nanotubes on dissolution in aniline

Somdutta SINGHA, Swapankumar GHOSH

PDF(315 KB)
PDF(315 KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (3) : 276-283. DOI: 10.1007/s11706-017-0395-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Spectroscopic investigation confirms retaining the pristine nature of single-walled carbon nanotubes on dissolution in aniline

Author information +
History +

Abstract

Carbon nanotubes in all forms are very much insoluble in both organic and inorganic solvents due to its high agglomeration and entangled morphology. General methods for dissolution of single-walled carbon nanotubes (SWNTs) are mostly associated with complexation or polymerization or addition of macromolecules which change the physical or chemical properties of SWNTs and the pristine nature of SWNTs is lost. Dissolution of SWNTs in a solvent like aniline is practiced here which is a very simple reaction method. Here aniline is capable to form a SWNT-aniline charge transfer complex without attachment of macromolecules or polymer which is also soluble in other organic solvents. Solvation of SWNTs by this method is also capable of maintaining the similarity between the structure of SWNTs before and after the dissolution, which means that the pristine nature of SWNTs is preserved. Formation of charge transfer complex in this reaction has been proven by UV-Vis/NIR absorption and photoluminescence spectroscopy. Raman spectroscopy and electron microscopy (FESEM and TEM) are the evidences for protection of the pristine nature of SWNTs even after high-temperature complexation reaction with aniline and also after solubilization in organic solvents.

Keywords

single-walled carbon nanotubes / aniline / dissolution / organic solvent / spectroscopy

Cite this article

Download citation ▾
Somdutta SINGHA, Swapankumar GHOSH. Spectroscopic investigation confirms retaining the pristine nature of single-walled carbon nanotubes on dissolution in aniline. Front. Mater. Sci., 2017, 11(3): 276‒283 https://doi.org/10.1007/s11706-017-0395-7

References

[1]
Iijima S, Ichihashi  T. Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993, 363(6430): 603–605
CrossRef Google scholar
[2]
Treacy M M J ,  Ebbesen T W ,  Gibson J M . Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature, 1996, 381(6584): 678–680
CrossRef Google scholar
[3]
Falvo M R, Clary  G J, Taylor  R M, . Bending and buckling of carbon nanotubes under large strain. Nature, 1997, 389(6651): 582–584
CrossRef Pubmed Google scholar
[4]
Wilder J W G ,  Venema L C ,  Rinzler A G , . Electronic structure of atomically resolved carbon nanotubes. Nature, 1998, 391(6662): 59–62
CrossRef Google scholar
[5]
Odom T W, Huang  J L, Kim  P, . Atomic structure and electronic properties of single-walled carbon nanotubes. Nature, 1998, 391(6662): 62–64
CrossRef Google scholar
[6]
Baughman R H, Zakhidov  A A, de Heer  W A. Carbon nanotubes — the route toward applications. Science, 2002, 297(5582): 787–792
CrossRef Pubmed Google scholar
[7]
Li H, Feng  L, Guan L , . Synthesis and purification of single-walled carbon nanotubes in the cottonlike soot. Solid State Communications, 2004, 132(3–4): 219–224
CrossRef Google scholar
[8]
Jo J W, Jung  J W, Lee  J U, . Fabrication of highly conductive and transparent thin films from single-walled carbon nanotubes using a new non-ionic surfactant via spin coating. ACS Nano, 2010, 4(9): 5382–5388
CrossRef Pubmed Google scholar
[9]
Lipomi D J, Vosgueritchian  M, Tee B C K , . Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nature Nanotechnology, 2011, 6(12): 788–792
CrossRef Pubmed Google scholar
[10]
Lee J Y, Connor  S T, Cui  Y, . Solution-processed metal nanowire mesh transparent electrodes. Nano Letters, 2008, 8(2): 689–692
CrossRef Pubmed Google scholar
[11]
Peumans P, Yakimov  A, Forrest S R . Small molecular weight organic thin-film photodetectors and solar cells. Journal of Applied Physics, 2003, 93(7): 3693–3723
CrossRef Google scholar
[12]
Andersson A, Johansson  N, Broms P , . Fluorine tin oxide as an alternative to indium tin oxide in polymer LEDs. Advanced Materials, 1998, 10(11): 859–863
CrossRef Google scholar
[13]
Chen J, Hamon  M A, Hu  H, . Solution properties of single-walled carbon nanotubes. Science, 1998, 282(5386): 95–98
CrossRef Pubmed Google scholar
[14]
Riggs J E, Guo  Z, Carroll D L , . Strong luminescence of solubilized carbon nanotubes. Journal of the American Chemical Society, 2000, 122(24): 5879–5880
CrossRef Google scholar
[15]
Sun Y P, Guduru  R, Lawson G E , . Photophysical and electron-transfer properties of mono- and multiple-functionalized fullerene derivatives. The Journal of Physical Chemistry B, 2000, 104(19): 4625–4632
CrossRef Google scholar
[16]
Tang B Z, Xu  H. Preparation, alignment and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes. Macromolecules, 1999, 32(8): 2569–2576
CrossRef Google scholar
[17]
O’Connell M J ,  Bachilo S M ,  Huffman C B , . Band gap fluorescence from individual single-walled carbon nanotubes. Science, 2002, 297(5581): 593–596
CrossRef Pubmed Google scholar
[18]
Chen R J, Zhang  Y, Wang D , . Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. Journal of the American Chemical Society, 2001, 123(16): 3838–3839
CrossRef Pubmed Google scholar
[19]
O’Connell M J ,  Boul P, Ericson  L M, . Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chemical Physics Letters, 2001, 342(3–4): 265–271
CrossRef Google scholar
[20]
Star A, Stoddart  J F, Steuerman  D, . Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angewandte Chemie International Edition, 2001, 40(9): 1721–1725
CrossRef Pubmed Google scholar
[21]
Boul P J, Liu  J, Mickelson E T , . Reversible sidewall functionalization of buckytubes. Chemical Physics Letters, 1999, 310(3–4): 367–372
CrossRef Google scholar
[22]
Chen J, Rao  A M, Lyuksyutov  S, . Dissolution of full-length single-walled carbon nanotubes. The Journal of Physical Che-mistry B, 2001, 105(13): 2525–2528
CrossRef Google scholar
[23]
Furtado C A, Kim  U J, Gutierrez  H R, . Debundling and dissolution of single-walled carbon nanotubes in amide solvents. Journal of the American Chemical Society, 2004, 126(19): 6095–6105
CrossRef Pubmed Google scholar
[24]
Ausman K D, Piner  R, Lourie O , . Organic solvent dispersions of single-walled carbon nanotubes: Toward solutions of pristine nanotubes. The Journal of Physical Chemistry B, 2000, 104(38): 8911–8915
CrossRef Google scholar
[25]
Sun Y, Wilson  S R, Schuster  D I. High dissolution and strong light emission of carbon nanotubes in aromatic amine solvents. Journal of the American Chemical Society, 2001, 123(22): 5348–5349
CrossRef Pubmed Google scholar
[26]
He B, Tang  Q, Liang T , . Efficient dye-sensitized solar cells from polyaniline–single wall carbon nanotube complex counter electrodes. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(9): 3119–3126
CrossRef Google scholar
[27]
Allemand P M, Koch  A, Wudl F , . Two different fullerenes have the same cyclic voltammetry. Journal of the American Chemical Society, 1991, 113(3): 1050–1051
CrossRef Google scholar
[28]
Sension R J, Szarka  A Z, Smith  G R, . Ultrafast photoinduced electron transfer to C60. Chemical Physics Letters, 1991, 185(3–4): 179–183
CrossRef Google scholar
[29]
Wang Y. Photophysical properties of fullerenes and fullerene/N,N-Diethylaniline charge-transfer complexes. The Journal of Physical Chemistry, 1992, 96(2): 764–767
CrossRef Google scholar
[30]
Rao A M, Eklund  P C, Bandow  S, . Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature, 1997, 388(6639): 257–259
CrossRef Google scholar
[31]
Itkis M E, Perea  D E, Niyogi  S, . Purity evaluation of as-prepared single-walled carbon nanotube soot by use of solution-phase near-IR spectroscopy. Nano Letters, 2003, 3(3): 309–314
CrossRef Google scholar
[32]
Sen R, Rickard  S M, Itkis  M E, . Controlled purification of single-walled carbon nanotube films by use of selective oxidation and near-IR spectroscopy. Chemistry of Materials, 2003, 15(22): 4273–4279
CrossRef Google scholar
[33]
Helttunen K, Galán  A, Ballester P , . Solid lipid nanoparticles from amphiphilic calixpyrroles. Journal of Colloid and Interface Science, 2016, 464: 59–65
CrossRef Pubmed Google scholar
[34]
Kasuya A, Sasaki  Y, Saito Y , . Evidence for size-dependent discrete dispersions in single-wall nanotubes. Physical Review Letters, 1997, 78(23): 4434–4437
CrossRef Google scholar
[35]
Chen G, Bandow  S, Margine E R , . Chemically doped double-walled carbon nanotubes: cylindrical molecular capacitors. Physical Review Letters, 2003, 90(25): 257403
CrossRef Pubmed Google scholar
[36]
Duesberg G S, Loa  I, Burghard M , . Polarized raman spectroscopy on isolated single-wall carbon nanotubes. Physical Review Letters, 2000, 85(25): 5436–5439
CrossRef Pubmed Google scholar
[37]
Kataura H, Kumazawa  Y, Maniwa Y , . Diameter control of single-walled carbon nanotubes. Carbon, 2000, 38(11–12): 1691–1697
CrossRef Google scholar
[38]
Ma J, Wang  N J. Purification of single-walled carbon nanotubes by a highly efficient and nondestructive approach. Chemistry of Materials, 2008, 20(9): 2895–2902
CrossRef Google scholar
[39]
Sheng L, Shi  L, An K , . Effective and efficient purification of single-wall carbon nanotubes based on hydrogen treatment. Chemical Physics Letters, 2011, 502(1–3): 101–106
CrossRef Google scholar

Acknowledgements

The authors are grateful to the Director, CSIR-Central Glass & Ceramic Research Institute, Kolkata for permission and extending facilities to carry out the above work. SS acknowledges CSIR for his fellowship. We thank 12 FYP CSIR Network project ESC-0103 for funding the DLS facility. Staff members of Electron microscopy, XRD, FTIR and Central Instrumentation Facility are also acknowledged for their assistance in obtaining data.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(315 KB)

Accesses

Citations

Detail

Sections
Recommended

/