Spectroscopic investigation confirms retaining the pristine nature of single-walled carbon nanotubes on dissolution in aniline

Somdutta SINGHA , Swapankumar GHOSH

Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (3) : 276 -283.

PDF (315KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (3) : 276 -283. DOI: 10.1007/s11706-017-0395-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Spectroscopic investigation confirms retaining the pristine nature of single-walled carbon nanotubes on dissolution in aniline

Author information +
History +
PDF (315KB)

Abstract

Carbon nanotubes in all forms are very much insoluble in both organic and inorganic solvents due to its high agglomeration and entangled morphology. General methods for dissolution of single-walled carbon nanotubes (SWNTs) are mostly associated with complexation or polymerization or addition of macromolecules which change the physical or chemical properties of SWNTs and the pristine nature of SWNTs is lost. Dissolution of SWNTs in a solvent like aniline is practiced here which is a very simple reaction method. Here aniline is capable to form a SWNT-aniline charge transfer complex without attachment of macromolecules or polymer which is also soluble in other organic solvents. Solvation of SWNTs by this method is also capable of maintaining the similarity between the structure of SWNTs before and after the dissolution, which means that the pristine nature of SWNTs is preserved. Formation of charge transfer complex in this reaction has been proven by UV-Vis/NIR absorption and photoluminescence spectroscopy. Raman spectroscopy and electron microscopy (FESEM and TEM) are the evidences for protection of the pristine nature of SWNTs even after high-temperature complexation reaction with aniline and also after solubilization in organic solvents.

Keywords

single-walled carbon nanotubes / aniline / dissolution / organic solvent / spectroscopy

Cite this article

Download citation ▾
Somdutta SINGHA, Swapankumar GHOSH. Spectroscopic investigation confirms retaining the pristine nature of single-walled carbon nanotubes on dissolution in aniline. Front. Mater. Sci., 2017, 11(3): 276-283 DOI:10.1007/s11706-017-0395-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Iijima SIchihashi  T. Single-shell carbon nanotubes of 1-nm diameter. Nature1993363(6430): 603–605

[2]

Treacy M M J Ebbesen T W Gibson J M . Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature1996381(6584): 678–680

[3]

Falvo M RClary  G JTaylor  R M. Bending and buckling of carbon nanotubes under large strain. Nature1997389(6651): 582–584

[4]

Wilder J W G Venema L C Rinzler A G . Electronic structure of atomically resolved carbon nanotubes. Nature1998391(6662): 59–62

[5]

Odom T WHuang  J LKim  P. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature1998391(6662): 62–64

[6]

Baughman R HZakhidov  A Ade Heer  W A. Carbon nanotubes — the route toward applications. Science2002297(5582): 787–792

[7]

Li HFeng  LGuan L . Synthesis and purification of single-walled carbon nanotubes in the cottonlike soot. Solid State Communications2004132(3–4): 219–224

[8]

Jo J WJung  J WLee  J U. Fabrication of highly conductive and transparent thin films from single-walled carbon nanotubes using a new non-ionic surfactant via spin coating. ACS Nano20104(9): 5382–5388

[9]

Lipomi D JVosgueritchian  MTee B C K . Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nature Nanotechnology20116(12): 788–792

[10]

Lee J YConnor  S TCui  Y. Solution-processed metal nanowire mesh transparent electrodes. Nano Letters20088(2): 689–692

[11]

Peumans PYakimov  AForrest S R . Small molecular weight organic thin-film photodetectors and solar cells. Journal of Applied Physics200393(7): 3693–3723

[12]

Andersson AJohansson  NBroms P . Fluorine tin oxide as an alternative to indium tin oxide in polymer LEDs. Advanced Materials199810(11): 859–863

[13]

Chen JHamon  M AHu  H. Solution properties of single-walled carbon nanotubes. Science1998282(5386): 95–98

[14]

Riggs J EGuo  ZCarroll D L . Strong luminescence of solubilized carbon nanotubes. Journal of the American Chemical Society2000122(24): 5879–5880

[15]

Sun Y PGuduru  RLawson G E . Photophysical and electron-transfer properties of mono- and multiple-functionalized fullerene derivatives. The Journal of Physical Chemistry B2000104(19): 4625–4632

[16]

Tang B ZXu  H. Preparation, alignment and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes. Macromolecules199932(8): 2569–2576

[17]

O’Connell M J Bachilo S M Huffman C B . Band gap fluorescence from individual single-walled carbon nanotubes. Science2002297(5581): 593–596

[18]

Chen R JZhang  YWang D . Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. Journal of the American Chemical Society2001123(16): 3838–3839

[19]

O’Connell M J Boul PEricson  L M. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chemical Physics Letters2001342(3–4): 265–271

[20]

Star AStoddart  J FSteuerman  D. Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angewandte Chemie International Edition200140(9): 1721–1725

[21]

Boul P JLiu  JMickelson E T . Reversible sidewall functionalization of buckytubes. Chemical Physics Letters1999310(3–4): 367–372

[22]

Chen JRao  A MLyuksyutov  S. Dissolution of full-length single-walled carbon nanotubes. The Journal of Physical Che-mistry B2001105(13): 2525–2528

[23]

Furtado C AKim  U JGutierrez  H R. Debundling and dissolution of single-walled carbon nanotubes in amide solvents. Journal of the American Chemical Society2004126(19): 6095–6105

[24]

Ausman K DPiner  RLourie O . Organic solvent dispersions of single-walled carbon nanotubes: Toward solutions of pristine nanotubes. The Journal of Physical Chemistry B2000104(38): 8911–8915

[25]

Sun YWilson  S RSchuster  D I. High dissolution and strong light emission of carbon nanotubes in aromatic amine solvents. Journal of the American Chemical Society2001123(22): 5348–5349

[26]

He BTang  QLiang T . Efficient dye-sensitized solar cells from polyaniline–single wall carbon nanotube complex counter electrodes. Journal of Materials Chemistry A: Materials for Energy and Sustainability20142(9): 3119–3126

[27]

Allemand P MKoch  AWudl F . Two different fullerenes have the same cyclic voltammetry. Journal of the American Chemical Society1991113(3): 1050–1051

[28]

Sension R JSzarka  A ZSmith  G R. Ultrafast photoinduced electron transfer to C60. Chemical Physics Letters1991185(3–4): 179–183

[29]

Wang Y. Photophysical properties of fullerenes and fullerene/N,N-Diethylaniline charge-transfer complexes. The Journal of Physical Chemistry199296(2): 764–767

[30]

Rao A MEklund  P CBandow  S. Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature1997388(6639): 257–259

[31]

Itkis M EPerea  D ENiyogi  S. Purity evaluation of as-prepared single-walled carbon nanotube soot by use of solution-phase near-IR spectroscopy. Nano Letters20033(3): 309–314

[32]

Sen RRickard  S MItkis  M E. Controlled purification of single-walled carbon nanotube films by use of selective oxidation and near-IR spectroscopy. Chemistry of Materials200315(22): 4273–4279

[33]

Helttunen KGalán  ABallester P . Solid lipid nanoparticles from amphiphilic calixpyrroles. Journal of Colloid and Interface Science2016464: 59–65

[34]

Kasuya ASasaki  YSaito Y . Evidence for size-dependent discrete dispersions in single-wall nanotubes. Physical Review Letters199778(23): 4434–4437

[35]

Chen GBandow  SMargine E R . Chemically doped double-walled carbon nanotubes: cylindrical molecular capacitors. Physical Review Letters200390(25): 257403

[36]

Duesberg G SLoa  IBurghard M . Polarized raman spectroscopy on isolated single-wall carbon nanotubes. Physical Review Letters200085(25): 5436–5439

[37]

Kataura HKumazawa  YManiwa Y . Diameter control of single-walled carbon nanotubes. Carbon200038(11–12): 1691–1697

[38]

Ma JWang  N J. Purification of single-walled carbon nanotubes by a highly efficient and nondestructive approach. Chemistry of Materials200820(9): 2895–2902

[39]

Sheng LShi  LAn K . Effective and efficient purification of single-wall carbon nanotubes based on hydrogen treatment. Chemical Physics Letters2011502(1–3): 101–106

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (315KB)

879

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/