Binary phase solid-state photopolymerization of acrylates: design, characterization and biomineralization of 3D scaffolds for tissue engineering

Inamullah MAITLO, Safdar ALI, Muhammad Yasir AKRAM, Farooq Khurum SHEHZAD, Jun NIE

PDF(638 KB)
PDF(638 KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (4) : 307-317. DOI: 10.1007/s11706-017-0394-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Binary phase solid-state photopolymerization of acrylates: design, characterization and biomineralization of 3D scaffolds for tissue engineering

Author information +
History +

Abstract

Porous polymer scaffolds designed by the cryogel method are attractive materials for a range of tissue engineering applications. However, the use of toxic cross-linker for retaining the pore structure limits their clinical applications. In this research, acrylates (HEA/PEGDA, HEMA/PEGDA and PEGDA) were used in the low-temperature solid-state photopolymerization to produce porous scaffolds with good structural retention. The morphology, pore diameter, mineral deposition and water absorption of the scaffold were characterized by SEM and water absorption test respectively. Elemental analysis and cytotoxicity of the biomineralized scaffold were revealed by using XRD and MTT assay test. The PEGDA-derived scaffold showed good water absorption ability and a higher degree of porosity with larger pore size compared to others. XRD patterns and IR results confirmed the formation of hydroxyapatite crystals from an alternative socking process. The overall cell proliferation was excellent, where PEGDA-derived scaffold had the highest and the most uniform cell growth, while HEMA/PEGDA scaffold showed the least. These results suggest that the cell proliferation and adhesion are directly proportional to the pore size, the shape and the porosity of scaffolds.

Keywords

binary phase solid-state photopolymerization / phase separation / tissue engineering / biomineralization / MTT

Cite this article

Download citation ▾
Inamullah MAITLO, Safdar ALI, Muhammad Yasir AKRAM, Farooq Khurum SHEHZAD, Jun NIE. Binary phase solid-state photopolymerization of acrylates: design, characterization and biomineralization of 3D scaffolds for tissue engineering. Front. Mater. Sci., 2017, 11(4): 307‒317 https://doi.org/10.1007/s11706-017-0394-8

References

[1]
Nunes-Pereira J, Ribeiro  S, Ribeiro C , . Poly (vinylidene fluoride) and copolymers as porous membranes for tissue engineering applications. Polymer Testing, 2015, 44: 234–241
CrossRef Google scholar
[2]
Li X M, Cui  R R, Sun  L W, . 3D-printed biopolymers for tissue engineering application. International Journal of Polymer Science, 2014, 2014: 1–13
CrossRef Google scholar
[3]
Chen G, Sato  T, Ushida T , . Tissue engineering of cartilage using a hybrid scaffold of synthetic polymer and collagen. Tissue Engineering, 2004, 10(3‒4): 323–330
CrossRef Pubmed Google scholar
[4]
Kutlusoy T, Oktay  B, Apohan N K , . Chitosan-co-hyaluronic acid porous cryogels and their application in tissue engineering. International Journal of Biological Macromolecules, 2017, 103: 366–378
CrossRef Pubmed Google scholar
[5]
Gomes M E, Reis  R L. Tissue engineering: key elements and some trends. Macromolecular Bioscience, 2004, 4(8): 737–742
CrossRef Pubmed Google scholar
[6]
Dhandayuthapani B, Yoshida  Y, Maekawa T , . Polymeric scaffolds in tissue engineering application: a review. International Journal of Polymer Science, 2011, 609–618
CrossRef Google scholar
[7]
Martin I, Obradovic  B, Treppo S , . Modulation of the mechanical properties of tissue engineered cartilage. Biorheology, 2000, 37(1‒2): 141–147
Pubmed
[8]
Bohner M, van Lenthe  G H, Grünenfelder  S, . Synthesis and characterization of porous β-tricalcium phosphate blocks. Biomaterials, 2005, 26(31): 6099–6105
CrossRef Pubmed Google scholar
[9]
Bose S, Vahabzadeh  S, Bandyopadhyay A . Bone tissue engineering using 3D printing. Materials Today, 2013, 16(12): 496–504
CrossRef Google scholar
[10]
Cao H, Kuboyama  N. A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering. Bone, 2010, 46(2): 386–395
CrossRef Pubmed Google scholar
[11]
Kim H D, Bae  E H, Kwon  I C, . Effect of PEG-PLLA diblock copolymer on macroporous PLLA scaffolds by thermally induced phase separation. Biomaterials, 2004, 25(12): 2319–2329
CrossRef Pubmed Google scholar
[12]
Li X, Liu  X, Dong W , . In vitro evaluation of porous poly(L-lactic acid) scaffold reinforced by chitin fibers. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2009, 90(2): 503–509
CrossRef Pubmed Google scholar
[13]
Grey C P, Newton  S T, Bowlin  G L, . Gradient fiber electrospinning of layered scaffolds using controlled transitions in fiber diameter. Biomaterials, 2013, 34(21): 4993–5006
CrossRef Pubmed Google scholar
[14]
Liu H, Nakagawa  K, Chaudhary D , . Freeze-dried macroporous foam prepared from chitosan/xanthan gum/montmorillonite nanocomposites. Chemical Engineering Research & Design, 2011, 89(11): 2356–2364
CrossRef Google scholar
[15]
Jain E, Srivastava  A, Kumar A . Macroporous interpenetrating cryogel network of poly(acrylonitrile) and gelatin for biomedical applications. Journal of Materials Science: Materials in Medicine, 2009, 20(S1): S173–S179
CrossRef Pubmed Google scholar
[16]
Sahiner N, Demirci  S. Conducting semi-interpenetrating polymeric composites via the preparation of poly(aniline), poly(thiophene), and poly(pyrrole) polymers within superporous poly(acrylic acid) cryogels. Reactive & Functional Polymers, 2016, 105: 60–65
CrossRef Google scholar
[17]
Plieva F M, Karlsson  M, Aguilar M R , . Pore structure in supermacroporous polyacrylamide based cryogels. Soft Matter, 2005, 1(4): 303–309
CrossRef Google scholar
[18]
Liu R, Xu  T, Wang C . A review of fabrication strategies and applications of porous ceramics prepared by freeze-casting method. Ceramics International, 2016, 42(2): 2907–2925
CrossRef Google scholar
[19]
Gutiérrez M C ,  Ferrer M L ,  del Monte F . Ice-templated materials: sophisticated structures exhibiting enhanced functionalities obtained after unidirectional freezing and ice-segregation-induced self-assembly. Chemistry of Materials, 2008, 20(3): 634–648
CrossRef Google scholar
[20]
Hennink W E, van Nostrum  C F. Novel crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews, 2012, 64(Supplement): 223–236
CrossRef Google scholar
[21]
Hoffman A S. Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 2002, 54(1): 3–12
CrossRef Pubmed Google scholar
[22]
Sachlos E, Czernuszka  J T. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. European Cells & Materials, 2003, 5(5): 29–40
CrossRef Pubmed Google scholar
[23]
Lu T, Li  Y, Chen T . Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. International Journal of Nanomedicine, 2013, 8: 337–350
CrossRef Pubmed Google scholar
[24]
Tao Y, Zhang  R, Yang W , . Carboxymethylated hyperbranched polysaccharide: Synthesis, solution properties, and fabrication of hydrogel. Carbohydrate Polymers, 2015, 128: 179–187
CrossRef Pubmed Google scholar
[25]
Henderson T M ,  Ladewig K ,  Haylock D N , . Cryogels for biomedical applications. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2013, 1(21): 2682–2695
CrossRef Google scholar
[26]
Beauchamp R O ,  St Clair M B G ,  Fennell T R , . A critical review of the toxicology of glutaraldehyde. Critical Reviews in Toxicology, 1992, 22(3‒4): 143–174
CrossRef Pubmed Google scholar
[27]
Plieva F M, Karlsson  M, Aguilar M R , . Pore structure of macroporous monolithic cryogels prepared from poly (vinyl alcohol). Journal of Applied Polymer Science, 2006, 100(2): 1057–1066
CrossRef Google scholar
[28]
Freed L E, Hollander  A P, Martin  I, . Chondrogenesis in a cell-polymer-bioreactor system. Experimental Cell Research, 1998, 240(1): 58–65
CrossRef Pubmed Google scholar
[29]
Petricoin E F III,  Ardekani A M ,  Hitt B A , . Use of proteomic patterns in serum to identify ovarian cancer. Lancet, 2002, 359(9306): 572–577
CrossRef Pubmed Google scholar
[30]
Burdick J A, Anseth  K S. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials, 2002, 23(22): 4315–4323
CrossRef Pubmed Google scholar
[31]
Liu Y, Chan-Park  M B. Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering. Biomaterials, 2009, 30(2): 196–207
CrossRef Pubmed Google scholar
[32]
Hwang Y, Sangaj  N, Varghese S . Interconnected macroporous poly(ethylene glycol) cryogels as a cell scaffold for cartilage tissue engineering. Tissue Engineering Part A, 2010, 16(10): 3033–3041
CrossRef Pubmed Google scholar
[33]
Zhu J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials, 2010, 31(17): 4639–4656
CrossRef Pubmed Google scholar
[34]
Chung B G, Lee  K H, Khademhosseini  A, . Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab on a Chip, 2012, 12(1): 45–59
CrossRef Pubmed Google scholar
[35]
Zhu J, Marchant  R E. Design properties of hydrogel tissue-engineering scaffolds. Expert Review of Medical Devices, 2011, 8(5): 607–626
CrossRef Pubmed Google scholar
[36]
Annabi N, Nichol  J W, Zhong  X, . Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Engineering Part B: Reviews, 2010, 16(4): 371–383
CrossRef Pubmed Google scholar
[37]
Van Vlierberghe S ,  Dubruel P ,  Schacht E . Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules, 2011, 12(5): 1387–1408
CrossRef Pubmed Google scholar
[38]
Ravichandran R, Venugopal  J R, Sundarrajan  S, . Precipitation of nanohydroxyapatite on PLLA/PBLG/collagen nanofibrous structures for the differentiation of adipose derived stem cells to osteogenic lineage. Biomaterials, 2012, 33(3): 846–855
CrossRef Pubmed Google scholar
[39]
Omidian H, Park  K, Kandalam U , . Swelling and mechanical properties of modified HEMA-based superporous hydrogels. Journal of Bioactive and Compatible Polymers, 2010, 25(5): 483–497
CrossRef Google scholar
[40]
Ji L, Chang  W, Cui M , . Photopolymerization kinetics and volume shrinkage of 1, 6-hexanediol diacrylate at different temperature. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 252: 216–221
CrossRef Google scholar
[41]
Chang W, Mu  X, Zhu X , . Biomimetic composite scaffolds based mineralization of hydroxyapatite on electrospun calcium-containing poly(vinyl alcohol) nanofibers. Materials Science and Engineering C, 2013, 33(7): 4369–4376
CrossRef Pubmed Google scholar
[42]
Rodríguez K ,  Renneckar S ,  Gatenholm P . Biomimetic calcium phosphate crystal mineralization on electrospun cellulose-based scaffolds. ACS Applied Materials & Interfaces, 2011, 3(3): 681–689
CrossRef Pubmed Google scholar
[43]
Li J, Chen  Y, Yin Y , . Modulation of nano-hydroxyapatite size via formation on chitosan–gelatin network film in situ. Biomaterials, 2007, 28(5): 781–790
CrossRef Pubmed Google scholar
[44]
Liu M, Dai  L, Shi H , . In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering. Materials Science and Engineering C, 2015, 49: 700–712
CrossRef Pubmed Google scholar
[45]
Kang Z, Zhang  X, Chen Y , . Preparation of polymer/calcium phosphate porous composite as bone tissue scaffolds. Materials Science and Engineering C, 2017, 70(Pt 2): 1125–1131
CrossRef Pubmed Google scholar
[46]
Zhu X, Loh  X J. Layer-by-layer assemblies for antibacterial applications. Biomaterials Science, 2015, 3(12): 1505–1518
CrossRef Pubmed Google scholar
[47]
Dumont V C, Mansur  H S, Mansur  A A, . Glycol chitosan/nanohydroxyapatite biocomposites for potential bone tissue engineering and regenerative medicine. International Journal of Biological Macromolecules, 2016, 93(Pt B): 1465–1478
CrossRef Pubmed Google scholar
[48]
Yang D, Zhang  J, Xue J , . Electrospinning of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanofibers with feature surface microstructure. Journal of Applied Polymer Science, 2013, 127(4): 2867–2874
CrossRef Google scholar
[49]
Jiang S, Poh  Y Z, Loh  X J. POSS-based hybrid cationic copolymers with low aggregation potential for efficient gene delivery. RSC Advances, 2015, 5(87): 71322–71328
CrossRef Google scholar
[50]
Kang Z, Zhang  X, Chen Y , . Preparation of polymer/calcium phosphate porous composite as bone tissue scaffolds. Materials Science and Engineering C, 2017, 70(Pt 2): 1125–1131
CrossRef Pubmed Google scholar
[51]
Ma G, Yang  D, Wang K , . Organic-soluble chitosan/polyhydroxybutyrate ultrafine fibers as skin regeneration prepared by electrospinning. Journal of Applied Polymer Science, 2010, 118(6): 3619–3624
CrossRef Google scholar
[52]
Boyan B D, Schwartz  Z. Regenerative medicine: Are calcium phosphate ceramics ‘smart’ biomaterials? Nature Reviews Rheumatology, 2011, 7(1): 8–9
CrossRef Pubmed Google scholar
[53]
Porter J R, Ruckh  T T, Popat  K C. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnology Progress, 2009, 25(6): 1539–1560
Pubmed
[54]
Kretlow J D, Mikos  A G. Review: mineralization of synthetic polymer scaffolds for bone tissue engineering. Tissue Engineering, 2007, 13(5): 927–938
CrossRef Pubmed Google scholar
[55]
Shor L, Güçeri  S, Wen X , . Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials, 2007, 28(35): 5291–5297
CrossRef Pubmed Google scholar
[56]
He M, Wang  Z, Cao Y , . Construction of chitin/PVA composite hydrogels with jellyfish gel-like structure and their biocompatibility. Biomacromolecules, 2014, 15(9): 3358–3365
CrossRef Pubmed Google scholar

Disclosure of potential conflicts of interests

The authors declare no competing financial interest.

Acknowledgement

The authors are thankful to the National Natural Science Foundation of China (Grant No. 51573011) for financial support.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(638 KB)

Accesses

Citations

Detail

Sections
Recommended

/