Hydrothermal growth of symmetrical ZnO nanorod arrays on nanosheets for gas sensing applications

Wenyan ZHAO , Chuanjin TIAN , Zhipeng XIE , Changan WANG , Wuyou FU , Haibin YANG

Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (3) : 271 -275.

PDF (245KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (3) : 271 -275. DOI: 10.1007/s11706-017-0393-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Hydrothermal growth of symmetrical ZnO nanorod arrays on nanosheets for gas sensing applications

Author information +
History +
PDF (245KB)

Abstract

The hierarchical ZnO nanostructures with 2-fold symmetrical nanorod arrays on zinc aluminum carbonate (ZnAl-CO3) nanosheets have been successfully synthesized through a two-step hydrothermal process. The primary nanosheets, which serve as the lattice-matched substrate for the self-assembly nanorod arrays at the second-step of the hydrothermal route, have been synthesized by using a template of anodic aluminum oxide (AAO). The as-prepared samples were characterized by XRD, FESEM, TEM and SAED. The nanorods have a diameter of about 100 nm and a length of about 2 µm. A growth mechanism was proposed according to the experimental results. The gas sensor fabricated from ZnO nanorod arrays showed a high sensitivity to ethanol at 230 °C. In addition, the response mechanism of the sensors has also been discussed according to the transient response of the gas sensors.

Keywords

ZnO nanorods / hydrothermal growth / gas sensitivity

Cite this article

Download citation ▾
Wenyan ZHAO, Chuanjin TIAN, Zhipeng XIE, Changan WANG, Wuyou FU, Haibin YANG. Hydrothermal growth of symmetrical ZnO nanorod arrays on nanosheets for gas sensing applications. Front. Mater. Sci., 2017, 11(3): 271-275 DOI:10.1007/s11706-017-0393-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Özgür Ü Alivov Y I Liu C. A comprehensive review of ZnO materials and devices. Journal of Applied Physics200598(4): 041301

[2]

Kochuveedu S T Oh J H Do Y R . Surface-plasmon-enhanced band emission of ZnO nanoflowers decorated with Au nanoparticles. Chemistry201218(24): 7467–7472

[3]

Martha SReddy  K HParida  K M. Fabrication of In2O3 modified ZnO for enhancing stability, optical behavior, electronic properties and photocatalytic activity for hydrogen production under visible light. Journal of Materials Chemistry A: Materials for Energy and Sustainability20142(10): 3621–3631

[4]

Hu WLi  ZYang J . Electronic and optical properties of graphene and graphitic ZnO nanocomposite structures. The Journal of Chemical Physics2013138(12): 124706

[5]

Liu ZWang  YWang B . PEC electrode of ZnO nanorods sensitized by CdS with different size and its photoelectric properties. International Journal of Hydrogen Energy201338(25): 10226–10234

[6]

Wang DChu  XGong M . Hydrothermal growth of ZnO nanoscrewdrivers and their gas sensing properties. Nanotechnology200718(18): 185601

[7]

Shi LNaik  A J TGoodall  J B M. Highly sensitive ZnO nanorod- and nanoprism-based NO2 gas sensors: size and shape control using a continuous hydrothermal pilot plant. Langmuir201329(33): 10603–10609

[8]

Pacholski CKornowski  AWeller H . Selbstorganisation von ZnO: von nanopartikeln zu nanostäbchen. Angewandte Chemie2002114(7): 1234–1237

[9]

Wang W ZZeng  B QYang  J. Aligned ultralong ZnO nanobelts and their enhanced field emission. Advanced Materials200618(24): 3275–3278

[10]

Xia YYang  P. Guest editorial: chemistry and physics of nanowires. Advanced Materials200315(5): 351–352

[11]

Martinson A B F Elam J W Hupp J T . ZnO nanotube based dye-sensitized solar cells. Nano Letters20077(8): 2183–2187

[12]

Hu LYan  JLiao M . An optimized ultraviolet-A light photodetector with wide-range photoresponse based on ZnS/ZnO biaxial nanobelt. Advanced Materials201224(17): 2305–2309

[13]

Wang XSong  JWang Z L . Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices. Journal of Materials Chemistry200717(8): 711–720

[14]

Huang X JChoi  Y K. Chemical sensors based on nanostructured materials. Sensors and Actuators B: Chemical2007122(2): 659–671

[15]

Greene L ELaw  MTan D H . General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Letters20055(7): 1231–1236

[16]

Chakrabarti SDutta  B K. Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. Journal of Hazardous Materials2004112(3): 269–278

[17]

Fang XYan  JHu L . Thin SnO2 nanowires with uniform diameter as excellent field emitters: a stability of more than 2400 minutes. Advanced Functional Materials201222(8): 1613–1622

[18]

Xiang BWang  PZhang X . Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition. Nano Letters20077(2): 323–328

[19]

Yin ZWu  SZhou X . Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small20106(2): 307–312

[20]

Whang DJin  SWu Y . Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Letters20033(9): 1255–1259

[21]

Basu SDutta  A. Modified heterojunction based on zinc oxide thin film for hydrogen gas-sensor application. Sensors and Actuators B: Chemical199422(2): 83–87

[22]

Gong HHu  J QWang  J H. Nano-crystalline Cu-doped ZnO thin film gas sensor for CO. Sensors and Actuators B: Chemical2006115(1): 247–251

[23]

Kim JYong  K. Mechanism study of ZnO nanorod-bundle sensors for H2S gas sensing. The Journal of Physical Chemistry C2011115(15): 7218–7224

[24]

Baratto CSberveglieri  GOnischuk A . Low temperature selective NO2 sensors by nanostructured fibres of ZnO. Sensors and Actuators B: Chemical2004100(1–2): 261–265

[25]

Sander M SGronsky  RSands T . Structure of bismuth telluride nanowire arrays fabricated by electrodeposition into porous anodic alumina templates. Chemistry of Materials200315(1): 335–339

[26]

Koh Y WLin  MTan C K . Self-assembly and selected area growth of zinc oxide nanorods on any surface promoted by an aluminum precoat. The Journal of Physical Chemistry B2004108(31): 11419–11425

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (245KB)

1093

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/