Hydrothermal growth of symmetrical ZnO nanorod arrays on nanosheets for gas sensing applications

Wenyan ZHAO, Chuanjin TIAN, Zhipeng XIE, Changan WANG, Wuyou FU, Haibin YANG

PDF(245 KB)
PDF(245 KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (3) : 271-275. DOI: 10.1007/s11706-017-0393-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Hydrothermal growth of symmetrical ZnO nanorod arrays on nanosheets for gas sensing applications

Author information +
History +

Abstract

The hierarchical ZnO nanostructures with 2-fold symmetrical nanorod arrays on zinc aluminum carbonate (ZnAl-CO3) nanosheets have been successfully synthesized through a two-step hydrothermal process. The primary nanosheets, which serve as the lattice-matched substrate for the self-assembly nanorod arrays at the second-step of the hydrothermal route, have been synthesized by using a template of anodic aluminum oxide (AAO). The as-prepared samples were characterized by XRD, FESEM, TEM and SAED. The nanorods have a diameter of about 100 nm and a length of about 2 µm. A growth mechanism was proposed according to the experimental results. The gas sensor fabricated from ZnO nanorod arrays showed a high sensitivity to ethanol at 230 °C. In addition, the response mechanism of the sensors has also been discussed according to the transient response of the gas sensors.

Keywords

ZnO nanorods / hydrothermal growth / gas sensitivity

Cite this article

Download citation ▾
Wenyan ZHAO, Chuanjin TIAN, Zhipeng XIE, Changan WANG, Wuyou FU, Haibin YANG. Hydrothermal growth of symmetrical ZnO nanorod arrays on nanosheets for gas sensing applications. Front. Mater. Sci., 2017, 11(3): 271‒275 https://doi.org/10.1007/s11706-017-0393-9

References

[1]
Özgür Ü ,  Alivov Y I ,  Liu C, . A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 2005, 98(4): 041301
CrossRef Google scholar
[2]
Kochuveedu S T ,  Oh J H ,  Do Y R , . Surface-plasmon-enhanced band emission of ZnO nanoflowers decorated with Au nanoparticles. Chemistry, 2012, 18(24): 7467–7472
CrossRef Pubmed Google scholar
[3]
Martha S, Reddy  K H, Parida  K M. Fabrication of In2O3 modified ZnO for enhancing stability, optical behavior, electronic properties and photocatalytic activity for hydrogen production under visible light. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(10): 3621–3631
CrossRef Google scholar
[4]
Hu W, Li  Z, Yang J . Electronic and optical properties of graphene and graphitic ZnO nanocomposite structures. The Journal of Chemical Physics, 2013, 138(12): 124706
CrossRef Pubmed Google scholar
[5]
Liu Z, Wang  Y, Wang B , . PEC electrode of ZnO nanorods sensitized by CdS with different size and its photoelectric properties. International Journal of Hydrogen Energy, 2013, 38(25): 10226–10234
CrossRef Google scholar
[6]
Wang D, Chu  X, Gong M . Hydrothermal growth of ZnO nanoscrewdrivers and their gas sensing properties. Nanotechnology, 2007, 18(18): 185601
CrossRef Google scholar
[7]
Shi L, Naik  A J T, Goodall  J B M, . Highly sensitive ZnO nanorod- and nanoprism-based NO2 gas sensors: size and shape control using a continuous hydrothermal pilot plant. Langmuir, 2013, 29(33): 10603–10609
CrossRef Pubmed Google scholar
[8]
Pacholski C, Kornowski  A, Weller H . Selbstorganisation von ZnO: von nanopartikeln zu nanostäbchen. Angewandte Chemie, 2002, 114(7): 1234–1237
CrossRef Google scholar
[9]
Wang W Z, Zeng  B Q, Yang  J, . Aligned ultralong ZnO nanobelts and their enhanced field emission. Advanced Materials, 2006, 18(24): 3275–3278
CrossRef Google scholar
[10]
Xia Y, Yang  P. Guest editorial: chemistry and physics of nanowires. Advanced Materials, 2003, 15(5): 351–352
CrossRef Google scholar
[11]
Martinson A B F ,  Elam J W ,  Hupp J T , . ZnO nanotube based dye-sensitized solar cells. Nano Letters, 2007, 7(8): 2183–2187
CrossRef Pubmed Google scholar
[12]
Hu L, Yan  J, Liao M , . An optimized ultraviolet-A light photodetector with wide-range photoresponse based on ZnS/ZnO biaxial nanobelt. Advanced Materials, 2012, 24(17): 2305–2309
CrossRef Pubmed Google scholar
[13]
Wang X, Song  J, Wang Z L . Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices. Journal of Materials Chemistry, 2007, 17(8): 711–720
CrossRef Google scholar
[14]
Huang X J, Choi  Y K. Chemical sensors based on nanostructured materials. Sensors and Actuators B: Chemical, 2007, 122(2): 659–671
CrossRef Google scholar
[15]
Greene L E, Law  M, Tan D H , . General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Letters, 2005, 5(7): 1231–1236
CrossRef Pubmed Google scholar
[16]
Chakrabarti S, Dutta  B K. Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. Journal of Hazardous Materials, 2004, 112(3): 269–278
CrossRef Pubmed Google scholar
[17]
Fang X, Yan  J, Hu L , . Thin SnO2 nanowires with uniform diameter as excellent field emitters: a stability of more than 2400 minutes. Advanced Functional Materials, 2012, 22(8): 1613–1622
CrossRef Google scholar
[18]
Xiang B, Wang  P, Zhang X , . Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition. Nano Letters, 2007, 7(2): 323–328
CrossRef Pubmed Google scholar
[19]
Yin Z, Wu  S, Zhou X , . Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small, 2010, 6(2): 307–312
CrossRef Pubmed Google scholar
[20]
Whang D, Jin  S, Wu Y , . Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Letters, 2003, 3(9): 1255–1259
CrossRef Google scholar
[21]
Basu S, Dutta  A. Modified heterojunction based on zinc oxide thin film for hydrogen gas-sensor application. Sensors and Actuators B: Chemical, 1994, 22(2): 83–87
CrossRef Google scholar
[22]
Gong H, Hu  J Q, Wang  J H, . Nano-crystalline Cu-doped ZnO thin film gas sensor for CO. Sensors and Actuators B: Chemical, 2006, 115(1): 247–251
CrossRef Google scholar
[23]
Kim J, Yong  K. Mechanism study of ZnO nanorod-bundle sensors for H2S gas sensing. The Journal of Physical Chemistry C, 2011, 115(15): 7218–7224
CrossRef Google scholar
[24]
Baratto C, Sberveglieri  G, Onischuk A , . Low temperature selective NO2 sensors by nanostructured fibres of ZnO. Sensors and Actuators B: Chemical, 2004, 100(1–2): 261–265
CrossRef Google scholar
[25]
Sander M S, Gronsky  R, Sands T , . Structure of bismuth telluride nanowire arrays fabricated by electrodeposition into porous anodic alumina templates. Chemistry of Materials, 2003, 15(1): 335–339
CrossRef Google scholar
[26]
Koh Y W, Lin  M, Tan C K , . Self-assembly and selected area growth of zinc oxide nanorods on any surface promoted by an aluminum precoat. The Journal of Physical Chemistry B, 2004, 108(31): 11419–11425
CrossRef Google scholar

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51302118 and 11304131), the Science Foundation of the Education Department of Jiangxi Province (No. GJJ13619), Science Foundation of Jiangxi Provincial Department of Science and Technology (No. 20142BAB212006), Jingdezhen Municipal Science and Technology Bureau (103037201), Open Topics of the State Key Laboratory of Super-hard Materials in Jilin University (201313) and the State Key Laboratory of New Ceramics and Fine Processing in Tsinghua University (KF1211, KF201206).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(245 KB)

Accesses

Citations

Detail

Sections
Recommended

/