A soft tissue adhesive based on aldehyde-sodium alginate and amino-carboxymethyl chitosan preparation through the Schiff reaction

Yu WU , Liu YUAN , Nai-an SHENG , Zi-qi GU , Wen-hao FENG , Hai-yue YIN , Yosry MORSI , Xiu-mei MO

Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (3) : 215 -222.

PDF (243KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (3) : 215 -222. DOI: 10.1007/s11706-017-0392-x
RESEARCH ARTICLE
RESEARCH ARTICLE

A soft tissue adhesive based on aldehyde-sodium alginate and amino-carboxymethyl chitosan preparation through the Schiff reaction

Author information +
History +
PDF (243KB)

Abstract

Sodium alginate and carboxymethyl chitosan have been extensively applied in tissue engineering and other relative fields due to their low price and excellent biocompatibility. In this paper, we oxidized sodium alginate with sodium periodate to convert 1,2-hydroxyl groups into aldehyde groups to get aldehyde-sodium alginate (A-SA). Carboxymethyl chitosan was modified with ethylenediamine (ED) in the presence of water-soluble N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC) to introduce additional amino groups to get amino-carboxymethyl chitosan (A-CS). Upon mixing the A-SA and A-CS aqueous solutions together, a gel rapidly formed based on the Schiff’s base reaction between aldehyde groups in A-SA and amino groups in A-CS. FTIR analysis confirmed the characteristic peak of Schiff’s base group in the hydrogel. It was confirmed that the gelation time be dependent on the aldehyde group content in A-SA and amino group content in A-CS. The fasted hydrogel formation takes place within 10 min. The data of bonding strength and cytotoxicity measurement also showed that the hydrogel had good adhesion and biocompatibility. All these results support that this gel has the potential as soft tissue adhesive.

Keywords

oxidized sodium alginate / amino-carboxymethyl chitosan / tissue adhesive / Schiff’s base

Cite this article

Download citation ▾
Yu WU, Liu YUAN, Nai-an SHENG, Zi-qi GU, Wen-hao FENG, Hai-yue YIN, Yosry MORSI, Xiu-mei MO. A soft tissue adhesive based on aldehyde-sodium alginate and amino-carboxymethyl chitosan preparation through the Schiff reaction. Front. Mater. Sci., 2017, 11(3): 215-222 DOI:10.1007/s11706-017-0392-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lloyd J DMarque  M J 3rdKacprowicz  R F. Closure techniques. Emergency Medicine Clinics of North America200725(1): 73–81

[2]

Yang T L. Chitin-based materials in tissue engineering: applications in soft tissue and epithelial organ. International Journal of Molecular Sciences201112(3): 1936–1963

[3]

Ladewig K. Drug delivery in soft tissue engineering. Expert Opinion on Drug Delivery20118(9): 1175–1188

[4]

Tay C YIrvine  S ABoey  F Y. Micro-/nano-engineered cellular responses for soft tissue engineering and biomedical applications. Small20117(10): 1361–1378

[5]

Zhang FHe  CCao L . Fabrication of gelatin-hyaluronic acid hybrid scaffolds with tunable porous structures for soft tissue engineering. International Journal of Biological Macromolecules201148(3): 474–481

[6]

Ryu J HLee  YKong W H . Catechol-functionalized chitosan/pluronic hydrogels for tissue adhesives and hemostatic materials. Biomacromolecules201112(7): 2653–2659

[7]

Lee YChung  H JYeo  S. Thermo-sensitive, injectable, and tissue adhesive sol–gel transition hyaluronic acid/pluronic composite hydrogels prepared from bio-inspired catechol-thiol reaction. Soft Matter20106(5): 977–983

[8]

Quinn JWells  GSutcliffe T . Tissue adhesive versus suture wound repair at 1 year: randomized clinical trial correlating early, 3-month, and 1-year cosmetic outcome. Annals of Emergency Medicine199832(6): 645–649

[9]

Chung HGrubbs  R H. Rapidly cross-linkable DOPA containing terpolymer adhesives and PEG-based cross-linkers for biomedical applications. Macromolecules201245(24): 9666–9673

[10]

Balakrishnan BBanerjee  R. Biopolymer-based hydrogels for cartilage tissue engineering. Chemical Reviews2011111(8): 4453–4474

[11]

Smith T JKennedy  J EHigginbotham  C L. Rheological and thermal characteristics of a two phase hydrogel system for potential wound healing applications. Journal of Materials Science201045(11): 2884–2891

[12]

Balakrishnan BJayakrishnan  A. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials200526(18): 3941–3951

[13]

Mo XIwata  HMatsuda S . Soft tissue adhesive composed of modified gelatin and polysaccharides. Journal of Biomaterials Science Polymer Edition200011(4): 341–351

[14]

Yuan LWu  YFang J . Modified alginate and gelatin cross-linked hydrogels for soft tissue adhesive. Artificial Cells, Nanomedicine, and Biotechnology201745(1): 76–83

[15]

Gomez CRinaudo  MVillar M . Oxidation of sodium alginate and characterization of the oxidized derivatives. Carbohydrate Polymers200767(3): 296–304

[16]

Balakrishnan BMohanty  MUmashankar P R . Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials200526(32): 6335–6342

[17]

Geng XMo  XFan L . Hierarchically designed injectable hydrogel from oxidized dextran, amino gelatin and 4-arm poly(ethylene glycol)-acrylate for tissue engineering application. Journal of Materials Chemistry201222(48): 25130–25139

[18]

Mo XIwata  HIkada Y . A tissue adhesives evaluated in vitro and in vivo analysis. Journal of Biomedical Materials Research Part A201094(1): 326–332

[19]

Hoare D GOlson  AKoshland D E  Jr. The reaction of hydroxamic acids with water-soluble carbodiimides. A Lossen rearrangement. Journal of the American Chemical Society196890(6): 1638–1643

[20]

Geng X HYuan  LMo X M . Oxidized dextran/amino gelatin/hyaluronic acid semi-interpenetrating network hydrogels for tissue engineering application. Advanced Materials Research2013627: 745–750

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (243KB)

1558

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/