A soft tissue adhesive based on aldehyde-sodium alginate and amino-carboxymethyl chitosan preparation through the Schiff reaction

Yu WU, Liu YUAN, Nai-an SHENG, Zi-qi GU, Wen-hao FENG, Hai-yue YIN, Yosry MORSI, Xiu-mei MO

PDF(243 KB)
PDF(243 KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (3) : 215-222. DOI: 10.1007/s11706-017-0392-x
RESEARCH ARTICLE
RESEARCH ARTICLE

A soft tissue adhesive based on aldehyde-sodium alginate and amino-carboxymethyl chitosan preparation through the Schiff reaction

Author information +
History +

Abstract

Sodium alginate and carboxymethyl chitosan have been extensively applied in tissue engineering and other relative fields due to their low price and excellent biocompatibility. In this paper, we oxidized sodium alginate with sodium periodate to convert 1,2-hydroxyl groups into aldehyde groups to get aldehyde-sodium alginate (A-SA). Carboxymethyl chitosan was modified with ethylenediamine (ED) in the presence of water-soluble N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC) to introduce additional amino groups to get amino-carboxymethyl chitosan (A-CS). Upon mixing the A-SA and A-CS aqueous solutions together, a gel rapidly formed based on the Schiff’s base reaction between aldehyde groups in A-SA and amino groups in A-CS. FTIR analysis confirmed the characteristic peak of Schiff’s base group in the hydrogel. It was confirmed that the gelation time be dependent on the aldehyde group content in A-SA and amino group content in A-CS. The fasted hydrogel formation takes place within 10 min. The data of bonding strength and cytotoxicity measurement also showed that the hydrogel had good adhesion and biocompatibility. All these results support that this gel has the potential as soft tissue adhesive.

Keywords

oxidized sodium alginate / amino-carboxymethyl chitosan / tissue adhesive / Schiff’s base

Cite this article

Download citation ▾
Yu WU, Liu YUAN, Nai-an SHENG, Zi-qi GU, Wen-hao FENG, Hai-yue YIN, Yosry MORSI, Xiu-mei MO. A soft tissue adhesive based on aldehyde-sodium alginate and amino-carboxymethyl chitosan preparation through the Schiff reaction. Front. Mater. Sci., 2017, 11(3): 215‒222 https://doi.org/10.1007/s11706-017-0392-x

References

[1]
Lloyd J D, Marque  M J 3rd, Kacprowicz  R F. Closure techniques. Emergency Medicine Clinics of North America, 2007, 25(1): 73–81
CrossRef Pubmed Google scholar
[2]
Yang T L. Chitin-based materials in tissue engineering: applications in soft tissue and epithelial organ. International Journal of Molecular Sciences, 2011, 12(3): 1936–1963
CrossRef Pubmed Google scholar
[3]
Ladewig K. Drug delivery in soft tissue engineering. Expert Opinion on Drug Delivery, 2011, 8(9): 1175–1188
CrossRef Pubmed Google scholar
[4]
Tay C Y, Irvine  S A, Boey  F Y, . Micro-/nano-engineered cellular responses for soft tissue engineering and biomedical applications. Small, 2011, 7(10): 1361–1378
CrossRef Pubmed Google scholar
[5]
Zhang F, He  C, Cao L , . Fabrication of gelatin-hyaluronic acid hybrid scaffolds with tunable porous structures for soft tissue engineering. International Journal of Biological Macromolecules, 2011, 48(3): 474–481
CrossRef Pubmed Google scholar
[6]
Ryu J H, Lee  Y, Kong W H , . Catechol-functionalized chitosan/pluronic hydrogels for tissue adhesives and hemostatic materials. Biomacromolecules, 2011, 12(7): 2653–2659
CrossRef Pubmed Google scholar
[7]
Lee Y, Chung  H J, Yeo  S, . Thermo-sensitive, injectable, and tissue adhesive sol–gel transition hyaluronic acid/pluronic composite hydrogels prepared from bio-inspired catechol-thiol reaction. Soft Matter, 2010, 6(5): 977–983
CrossRef Google scholar
[8]
Quinn J, Wells  G, Sutcliffe T , . Tissue adhesive versus suture wound repair at 1 year: randomized clinical trial correlating early, 3-month, and 1-year cosmetic outcome. Annals of Emergency Medicine, 1998, 32(6): 645–649
CrossRef Pubmed Google scholar
[9]
Chung H, Grubbs  R H. Rapidly cross-linkable DOPA containing terpolymer adhesives and PEG-based cross-linkers for biomedical applications. Macromolecules, 2012, 45(24): 9666–9673
CrossRef Google scholar
[10]
Balakrishnan B, Banerjee  R. Biopolymer-based hydrogels for cartilage tissue engineering. Chemical Reviews, 2011, 111(8): 4453–4474
CrossRef Pubmed Google scholar
[11]
Smith T J, Kennedy  J E, Higginbotham  C L. Rheological and thermal characteristics of a two phase hydrogel system for potential wound healing applications. Journal of Materials Science, 2010, 45(11): 2884–2891
CrossRef Google scholar
[12]
Balakrishnan B, Jayakrishnan  A. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials, 2005, 26(18): 3941–3951
CrossRef Pubmed Google scholar
[13]
Mo X, Iwata  H, Matsuda S , . Soft tissue adhesive composed of modified gelatin and polysaccharides. Journal of Biomaterials Science Polymer Edition, 2000, 11(4): 341–351
CrossRef Pubmed Google scholar
[14]
Yuan L, Wu  Y, Fang J , . Modified alginate and gelatin cross-linked hydrogels for soft tissue adhesive. Artificial Cells, Nanomedicine, and Biotechnology, 2017, 45(1): 76–83
CrossRef Pubmed Google scholar
[15]
Gomez C, Rinaudo  M, Villar M . Oxidation of sodium alginate and characterization of the oxidized derivatives. Carbohydrate Polymers, 2007, 67(3): 296–304
CrossRef Google scholar
[16]
Balakrishnan B, Mohanty  M, Umashankar P R , . Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials, 2005, 26(32): 6335–6342
CrossRef Pubmed Google scholar
[17]
Geng X, Mo  X, Fan L , . Hierarchically designed injectable hydrogel from oxidized dextran, amino gelatin and 4-arm poly(ethylene glycol)-acrylate for tissue engineering application. Journal of Materials Chemistry, 2012, 22(48): 25130–25139
CrossRef Google scholar
[18]
Mo X, Iwata  H, Ikada Y . A tissue adhesives evaluated in vitro and in vivo analysis. Journal of Biomedical Materials Research Part A, 2010, 94(1): 326–332
CrossRef Pubmed Google scholar
[19]
Hoare D G, Olson  A, Koshland D E  Jr. The reaction of hydroxamic acids with water-soluble carbodiimides. A Lossen rearrangement. Journal of the American Chemical Society, 1968, 90(6): 1638–1643
CrossRef Pubmed Google scholar
[20]
Geng X H, Yuan  L, Mo X M . Oxidized dextran/amino gelatin/hyaluronic acid semi-interpenetrating network hydrogels for tissue engineering application. Advanced Materials Research, 2013, 627: 745–750
CrossRef Google scholar

Acknowledgements

The authors sincerely appreciate the supports of the National Major Research Program of China (2016YFC1100202), the National Natural Science Foundation of China (Grant No. 31470941), the Yantai Double Hundred Talent Plan, and the “111 Project” Biomedical Textile Materials Science and Technology, China (Grant No. B07024).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(243 KB)

Accesses

Citations

Detail

Sections
Recommended

/