In vitro corrosion of Mg--Ca alloy --- The influence of glucose content

Lan-Yue CUI, Xiao-Ting LI, Rong-Chang ZENG, Shuo-Qi LI, En-Hou HAN, Liang SONG

PDF(709 KB)
PDF(709 KB)
Front. Mater. Sci. ›› 2017, Vol. 11 ›› Issue (3) : 284-295. DOI: 10.1007/s11706-017-0391-y
RESEARCH ARTICLE
RESEARCH ARTICLE

In vitro corrosion of Mg--Ca alloy --- The influence of glucose content

Author information +
History +

Abstract

Influence of glucose on corrosion of biomedical Mg–1.35Ca alloy was made using hydrogen evolution, pH and electrochemical polarization in isotonic saline solution. The corrosion morphologies, compositions and structures were probed by virtue of SEM, EDS, FTIR, XRD and XPS. Results indicate that the glucose accelerated the corrosion of the alloy. The elemental Ca has no visible effect on the corrosion mechanism of glucose for the Mg–1.35Ca alloy in comparison with pure Mg. In addition, the presence of CO2 has beneficial effect against corrosion due to the formation of a layer of carbonate-containing products.

Keywords

magnesium / corrosion / glucose / biomaterial

Cite this article

Download citation ▾
Lan-Yue CUI, Xiao-Ting LI, Rong-Chang ZENG, Shuo-Qi LI, En-Hou HAN, Liang SONG. In vitro corrosion of Mg--Ca alloy --- The influence of glucose content. Front. Mater. Sci., 2017, 11(3): 284‒295 https://doi.org/10.1007/s11706-017-0391-y

References

[1]
Zeng R C, Qi  W C, Cui  H Z, . In vitro corrosion of as-extruded Mg–Ca alloys — The influence of Ca concentration. Corrosion Science, 2015, 96: 23–31
CrossRef Google scholar
[2]
Cui W, Beniash  E, Gawalt E , . Biomimetic coating of magnesium alloy for enhanced corrosion resistance and calcium phosphate deposition. Acta Biomaterialia, 2013, 9(10): 8650–8659
CrossRef Pubmed Google scholar
[3]
Hort N, Huang  Y, Fechner D , . Magnesium alloys as implant materials — principles of property design for Mg–RE alloys. Acta Biomaterialia, 2010, 6(5): 1714–1725
CrossRef Pubmed Google scholar
[4]
Gu X, Zheng  Y, Cheng Y , . In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials, 2009, 30(4): 484–498
CrossRef Pubmed Google scholar
[5]
Chen Y Q, Zhao  S, Chen M Y , . Sandwiched polydopamine (PDA) layer for titanium dioxide (TiO2) coating on magnesium to enhance corrosion protection. Corrosion Science, 2015, 96: 67–73
CrossRef Google scholar
[6]
Zberg B, Uggowitzer  P J, Löffler  J F. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nature Materials, 2009, 8(11): 887–891
CrossRef Pubmed Google scholar
[7]
Peng Q, Guo  J, Fu H , . Degradation behavior of Mg-based biomaterials containing different long-period stacking ordered phases. Scientific Reports, 2014, 4(1): 3620
CrossRef Pubmed Google scholar
[8]
Zeng R, Dietzel  W, Witte F , . Progress and challenge for magnesium alloys as biomaterials. Advanced Engineering Materials, 2008, 10(8): B3–B14
CrossRef Google scholar
[9]
Ascencio M, Pekguleryuz  M, Omanovic S . An investigation of the corrosion mechanisms of WE43 Mg alloy in a modified simulated body fluid solution: The influence of immersion time. Corrosion Science, 2014, 87: 489–503
CrossRef Google scholar
[10]
Cui L Y, Zeng  R C, Guan  S K, . Degradation mechanism of micro-arc oxidation coatings on biodegradable Mg–Ca alloys: The influence of porosity. Journal of Alloys and Compounds, 2017, 695: 2464–2476
CrossRef Google scholar
[11]
Cui L Y, Gao  S D, Li  P P, . Corrosion resistance of a self-healing micro-arc oxidation/polymethyltrimethoxysilane composite coating on magnesium alloy AZ31. Corrosion Science, 2017, 118: 84–95
CrossRef Google scholar
[12]
Asl S K F ,  Nemeth S ,  Tan M J . Hydrothermally deposited protective and bioactive coating for magnesium alloys for implant application. Surface and Coatings Technology, 2014, 258: 931–937
CrossRef Google scholar
[13]
Doepke A, Kuhlmann  J, Guo X , . A system for characterizing Mg corrosion in aqueous solutions using electrochemical sensors and impedance spectroscopy. Acta Biomaterialia, 2013, 9(11): 9211–9219
CrossRef Pubmed Google scholar
[14]
Choudhary L, Singh Raman  R K. Magnesium alloys as body implants: fracture mechanism under dynamic and static loadings in a physiological environment. Acta Biomaterialia, 2012, 8(2): 916–923
CrossRef Pubmed Google scholar
[15]
Zeng R C, Cui  L Y, Jiang  K, . In vitro corrosion and cytocompatibility of a microarc oxidation coating and poly(L-lactic acid) composite coating on Mg–1Li–1Ca alloy for orthopedic implants. ACS Applied Materials & Interfaces, 2016, 8(15): 10014–10028
CrossRef Pubmed Google scholar
[16]
Mueller W D, Lucia Nascimento  M, Lorenzo de Mele  M F. Critical discussion of the results from different corrosion studies of Mg and Mg alloys for biomaterial applications. Acta Biomaterialia, 2010, 6(5): 1749–1755
CrossRef Pubmed Google scholar
[17]
Xin Y, Hu  T, Chu P K . Influence of test solutions on in vitro studies of biomedical magnesium alloys. Journal of the Electrochemical Society, 2010, 157(7): C238
CrossRef Google scholar
[18]
Yang L, Zhang  E. Biocorrosion behavior of magnesium alloy in different simulated fluids for biomedical application. Materials Science and Engineering C, 2009, 29(5): 1691–1696
CrossRef Google scholar
[19]
Xin Y, Hu  T, Chu P K . In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. Acta Biomaterialia, 2011, 7(4): 1452–1459
CrossRef Pubmed Google scholar
[20]
Cui L Y, Hu  Y, Zeng R C , . New insights into the effect of Tris-HCl and Tris on corrosion of magnesium alloy in presence of bicarbonate, sulfate, hydrogen phosphate and dihydrogen phosphate ions. Journal of Materials Science and Technology, 2017, doi:  10.1016/j.jmst.2017.01.005
CrossRef Google scholar
[21]
Zeng R C, Hu  Y, Guan S K , . Corrosion of magnesium alloy AZ31: The influence of bicarbonate, sulphate, hydrogen phosphate and dihydrogen phosphate ions in saline solution. Corrosion Science, 2014, 86: 171–182
CrossRef Google scholar
[22]
Wang L, Shinohara  T, Zhang B P . Influence of chloride, sulfate and bicarbonate anions on the corrosion behavior of AZ31 magnesium alloy. Journal of Alloys and Compounds, 2010, 496(1–2): 500–507
CrossRef Google scholar
[23]
Xin Y, Huo  K, Tao H , . Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. Acta Biomaterialia, 2008, 4(6): 2008–2015
CrossRef Pubmed Google scholar
[24]
Rettig R, Virtanen  S. Composition of corrosion layers on a magnesium rare-earth alloy in simulated body fluids. Journal of Biomedical Materials Research Part A, 2009, 88(2): 359–369
CrossRef Pubmed Google scholar
[25]
Heakal F E-T, Fekry  A M, Fatayerji  M Z. Electrochemical behavior of AZ91D magnesium alloy in phosphate medium — part I. Effect of pH. Journal of Applied Electrochemistry, 2009, 39(5): 583–591
CrossRef Google scholar
[26]
Wang J, Smith  C E, Sankar  J, . Absorbable magnesium-based stent: physiological factors to consider for in vitro degradation assessments. Regenerative Biomaterials, 2015, 2(1): 59–69
CrossRef Pubmed Google scholar
[27]
Shayeb H A E ,  Sawy E N E . Corrosion behaviour of pure Mg, AS31 and AZ91 in buffered and unbuffered sulphate and chloride solutions. Corrosion Engineering, Science and Technology, 2011, 46(4): 481–492
CrossRef Google scholar
[28]
Yang L J, Wei  Y H, Hou  L F, . Corrosion behaviour of die-cast AZ91D magnesium alloy in aqueous sulphate solutions. Corrosion Science, 2010, 52(2): 345–351
CrossRef Google scholar
[29]
Kirkland N T, Lespagnol  J, Birbilis N , . A survey of bio-corrosion rates of magnesium alloys. Corrosion Science, 2010, 52(2): 287–291
CrossRef Google scholar
[30]
Yamamoto A, Hiromoto  S. Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro. Materials Science and Engineering C, 2009, 29(5): 1559–1568
CrossRef Google scholar
[31]
Yang L, Hort  N, Willumeit R , . Effects of corrosion environment and proteins on magnesium corrosion. Corrosion Engineering, Science and Technology, 2012, 47(5): 335–339
CrossRef Google scholar
[32]
Liu C L, Wang  Y J, Zeng  R C, . In vitro corrosion degradation behaviour of Mg–Ca alloy in the presence of albumin. Corrosion Science, 2010, 52(10): 3341–3347
CrossRef Google scholar
[33]
Rettig R, Virtanen  S. Time-dependent electrochemical characterization of the corrosion of a magnesium rare-earth alloy in simulated body fluids. Journal of Biomedical Materials Research Part A, 2008, 85(1): 167–175
CrossRef Pubmed Google scholar
[34]
Mueller W D, de Mele  M F, Nascimento  M L, . Degradation of magnesium and its alloys: dependence on the composition of the synthetic biological media. Journal of Biomedical Materials Research Part A, 2009, 90(2): 487–495
CrossRef Pubmed Google scholar
[35]
Willumeit R, Feyerabend  F, Huber N . Magnesium degradation as determined by artificial neural networks. Acta Biomaterialia, 2013, 9(10): 8722–8729
CrossRef Pubmed Google scholar
[36]
Zeng R C, Li  X T, Li  S Q, . In vitro degradation of pure Mg in response to glucose. Scientific Reports, 2015, 5(1): 13026
CrossRef Pubmed Google scholar
[37]
Hwang D, Wang  H L. Medical contraindications to implant therapy Part II: Relative contraindications. Implant Dentistry, 2007, 16(1): 13–23
CrossRef Pubmed Google scholar
[38]
Messer R L, Tackas  G, Mickalonis J , . Corrosion of machined titanium dental implants under inflammatory conditions. Journal of Biomedical Materials Research. Part B: Applied Biomaterials, 2009, 88(2): 474–481
CrossRef Pubmed Google scholar
[39]
Kim D J, Xun  P, Liu K , . Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. Diabetes Care, 2010, 33(12): 2604–2610
CrossRef Pubmed Google scholar
[40]
Chaudhary D P ,  Sharma R ,  Bansal D D . Implications of magnesium deficiency in type 2 diabetes: a review. Biological Trace Element Research, 2010, 134(2): 119–129
CrossRef Pubmed Google scholar
[41]
Yin P, Li  N F, Lei  T, . Effects of Ca on microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Ca alloys. Journal of Materials Science: Materials in Medicine, 2013, 24(6): 1365–1373
CrossRef Pubmed Google scholar
[42]
Li Y, Hodgson  P D, Wen  C E. The effects of calcium and yttrium additions on the microstructure, mechanical properties and biocompatibility of biodegradable magnesium alloys. Journal of Materials Science, 2011, 46(2): 365–371
CrossRef Pubmed Google scholar
[43]
Song G. Control of biodegradation of biocompatable magnesium alloys. Corrosion Science, 2007, 49(4): 1696–1701
CrossRef Google scholar
[44]
Cui L Y, Zeng  R C, Li  S Q, . Corrosion resistance of layer-by-layer assembled polyvinylpyrrolidone/polyacrylic acid and amorphous silica films on AZ31 magnesium alloys. RSC Advances, 2016, 6(68): 63107–63116
CrossRef Google scholar
[45]
Cui L Y, Zeng  R C, Zhu  X X, . Corrosion resistance of biodegradable polymeric layer-by-layer coatings on magnesium alloy AZ31. Frontiers of Materials Science, 2016, 10(2): 134–146
CrossRef Google scholar
[46]
Zeng R C, Zhang  F, Lan Z D , . Corrosion resistance of calcium-modified zinc phosphate conversion coatings on magnesium–aluminium alloys. Corrosion Science, 2014, 88: 452–459
CrossRef Google scholar
[47]
Zhang H, Luo  R F, Li  W J, . Epigallocatechin gallate (EGCG) induced chemical conversion coatings for corrosion protection of biomedical MgZnMn alloys. Corrosion Science, 2015, 94: 305–315
CrossRef Google scholar
[48]
Zhang F, Zhang  C L, Zeng  R C, . Corrosion resistance of the superhydrophobic Mg(OH)2/Mg–Al layered double hydroxide coatings on magnesium alloys. Metals, 2016, 6(4): 85
CrossRef Google scholar
[49]
Liu L J, Li  P P, Zou  Y H, . In vitro corrosion and antibacterial performance of polysiloxane and poly(acrylic acid)/gentamicin sulfate composite coatings on AZ31 alloy. Surface and Coatings Technology, 2016, 291: 7–14
CrossRef Google scholar
[50]
Ozturk S, Balkose  D, Okur S , . Effect of humidity on electrical conductivity of zinc stearate nanofilms. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302(1–3): 67–74
CrossRef Google scholar
[51]
Garai S, Garai  S, Jaisankar P , . A comprehensive study on crude methanolic extract of Artemisia pallens (Asteraceae) and its active component as effective corrosion inhibitors of mild steel in acid solution. Corrosion Science, 2012, 60: 193–204
CrossRef Google scholar
[52]
Zeng R C, Liu  Z G, Zhang  F, . Corrosion of molybdate intercalated hydrotalcite coating on AZ31 Mg alloy. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(32): 13049–13057
CrossRef Google scholar
[53]
Zhao L, Liu  Q, Gao R , . One-step method for the fabrication of superhydrophobic surface on magnesium alloy and its corrosion protection, antifouling performance. Corrosion Science, 2014, 80: 177–183
CrossRef Google scholar
[54]
Zhou X, Yang  H, Wang F . Investigation on the inhibition behavior of a pentaerythritol glycoside for carbon steel in 3.5% NaCl saturated Ca(OH)2 solution. Corrosion Science, 2012, 54: 193–200
CrossRef Google scholar
[55]
Tong J, Han  X, Wang S , . Evaluation of structural characteristics of Huadian oil shale kerogen using direct techniques (Solid-State 13C NMR, XPS, FT-IR, and XRD). Energy & Fuels, 2011, 25(9): 4006–4013
CrossRef Google scholar
[56]
Zeng R C, Guo  X, Liu C , . Study on corrosion of medical Mg–Ca and Mg–Li–Ca alloys. Acta Metallurgica Sinica, 2011, 47(11): 1477–1482 (in Chinese)
[57]
Cui Z, Li  X, Xiao K , . Atmospheric corrosion of field-exposed AZ31 magnesium in a tropical marine environment. Corrosion Science, 2013, 76: 243–256
CrossRef Google scholar
[58]
Esmaily M, Shahabi-Navid  M, Svensson J E , . Influence of temperature on the atmospheric corrosion of the Mg–Al alloy AM50. Corrosion Science, 2015, 90: 420–433
CrossRef Google scholar
[59]
Shahabi-Navid M, Esmaily  M, Svensson J E , . NaCl-induced atmospheric corrosion of the MgAl alloy AM50 — The influence of CO2. Clinical and Experimental Immunology, 2014, 161(6): C277–C287

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Grant No. 51571134) and the SDUST Research Fund (No. 2014TDJH104).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(709 KB)

Accesses

Citations

Detail

Sections
Recommended

/